Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 237(4): 1229-1241, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373000

RESUMO

Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet ) and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2 ), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta-analysis of tree studies of the effect of eCO2 on iWUE and its components Anet and stomatal conductance (gs ). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf-air vapour pressure difference (D). We expected smaller gs , but greater Anet , responses to eCO2 in gymnosperms compared with angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO2 in all PFTs, and that increases in Anet had stronger effects than reductions in gs . The USO model correctly captured stomatal behaviour with eCO2 across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g1 ) for the gymnosperm, compared with angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.


Assuntos
Magnoliopsida , Árvores , Árvores/fisiologia , Dióxido de Carbono/farmacologia , Cycadopsida , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Água/fisiologia , Estômatos de Plantas/fisiologia
2.
Sci Adv ; 8(47): eadc9798, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417535

RESUMO

Spatially resolved thermoelectric detection of magnetic systems provides a unique platform for the investigation of spintronic and spin caloritronic effects. Hitherto, these investigations have been resolution-limited, confining analysis of the thermoelectric response to regions where the magnetization is uniform or collinear at length scales comparable to the domain size. Here, we investigate the thermoelectric response from a single trapped domain wall using a heated scanning probe. Following this approach, we unambiguously resolve the domain wall due to its local thermoelectric response. Combining analytical and thermal micromagnetic modeling, we conclude that the measured thermoelectric signature is unique to that of a domain wall with a Néel-like character. Our approach is highly sensitive to the plane of domain wall rotation, which permits the distinct identification of Bloch or Néel walls at the nanoscale and could pave the way for the identification and characterization of a range of noncollinear spin textures through their thermoelectric signatures.

3.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745306

RESUMO

Cylindrical magnetic nanowires are promising materials that have the potential to be used in a wide range of applications. The versatility of these nanostructures is based on the tunability of their magnetic properties, which is achieved by appropriately selecting their composition and morphology. In addition, stochastic behavior has attracted attention in the development of neuromorphic devices relying on probabilistic magnetization switching. Here, we present a study of the magnetization reversal process in multisegmented CoNi/Cu nanowires. Nonstandard 2D magnetic maps, recorded under an in-plane magnetic field, produce datasets that correlate with magnetoresistance measurements and micromagnetic simulations. From this process, the contribution of the individual segments to the demagnetization process can be distinguished. The results show that the magnetization reversal in these nanowires does not occur through a single Barkhausen jump, but rather by multistep switching, as individual CoNi segments in the NW undergo a magnetization reversal. The existence of vortex states is confirmed by their footprint in the magnetoresistance and 2D MFM maps. In addition, the stochasticity of the magnetization reversal is analysed. On the one hand, we observe different switching fields among the segments due to a slight variation in geometrical parameters or magnetic anisotropy. On the other hand, the stochasticity is observed in a series of repetitions of the magnetization reversal processes for the same NW under the same conditions.

4.
Front Plant Sci ; 13: 836968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321443

RESUMO

Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C3 grasses, C4 grasses and legumes) planted in monoculture. Winter/spring drought resulted in productivity declines of 45% on average and up to 74% for the most affected species (Digitaria eriantha) during the 6-month treatment period, with eight of the nine species exhibiting significant yield reductions. Despite considerable variation in species' sensitivity to drought, C4 grasses were more strongly affected by this treatment than C3 grasses or legumes. Warming also had negative effects on cool-season productivity, associated at least partially with exceedance of optimum growth temperatures in spring and indirect effects on soil water content. The combination of winter/spring drought and year-round warming resulted in the greatest yield reductions. We identified responses that were either additive (Festuca), or less-than-additive (Medicago), where warming reduced the magnitude of drought effects. Results from this study highlight the sensitivity of diverse pasture species to increases in winter and spring drought severity similar to those predicted for this region, and that anticipated benefits of cool-season warming are unlikely to be realized. Overall, the substantial negative impacts on productivity suggest that future, warmer, drier climates will result in shortfalls in cool-season forage availability, with profound implications for the livestock industry and natural grazer communities.

5.
Plant Cell Environ ; 45(6): 1631-1646, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319101

RESUMO

Determining the relationship between reductions in stomatal conductance (gs ) and leaf water transport during dehydration is key to understanding plant drought responses. While numerous studies have analysed the hydraulic function of woody species, minimal research has been conducted on grasses. Here, we sought to characterize hydraulic vulnerability in five widely-occurring pasture grasses (including both C3 and C4 grasses) and determine whether reductions in gs and leaf hydraulic conductance (Kleaf ) during dehydration could be attributed to xylem embolism. Using the optical vulnerability (OV) technique, we found that all species were highly resistant to xylem embolism when compared to other herbaceous angiosperms, with 50% xylem embolism (PX50 ) occurring at xylem pressures ranging from -4.4 to -6.1 MPa. We observed similar reductions in gs and Kleaf under mild water stress for all species, occurring well before PX50 . The onset of xylem embolism (PX12 ) occurred consistently after stomatal closure and 90% reduction of Kleaf . Our results suggest that factors other than xylem embolism are responsible for the majority of reductions in gs and Kleaf during drought and reductions in the productivity of pasture species under moderate drought may not be driven by embolism.


Assuntos
Secas , Embolia , Desidratação , Folhas de Planta/fisiologia , Poaceae , Xilema/fisiologia
6.
Tree Physiol ; 42(3): 523-536, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34612494

RESUMO

Mistletoes are important co-contributors to tree mortality globally, particularly during droughts. In Australia, mistletoe distributions are expanding in temperate woodlands, while their hosts have experienced unprecedented heat and drought stress in recent years. We investigated whether the excessive water use of mistletoes increased the probability of xylem emboli in a mature woodland during the recent record drought that was compounded by multiple heatwaves. We continuously recorded transpiration ($T_{SLA}$) of infected and uninfected branches from two eucalypt species over two summers, monitored stem and leaf water potentials ($\Psi $) and used hydraulic vulnerability curves to estimate percent loss in conductivity (PLC) for each species. Variations in weather (vapor pressure deficit, photosynthetically active radiation, soil water content), host species and % mistletoe foliage explained 78% of hourly $T_{SLA}$. While mistletoe acted as an uncontrollable sink for water in the host even during typical summer days, daily $T_{SLA}$ increased up to 4-fold in infected branches on hot days, highlighting the previously overlooked importance of temperature stress in amplifying water loss in mistletoes. The increased water use of mistletoes resulted in significantly decreased host $\Psi _{\rm{leaf}}$ and $\Psi _{\rm{trunk}}$. It further translated to an estimated increase of up to 11% PLC for infected hosts, confirming greater hydraulic dysfunction of infected trees that place them at higher risk of hydraulic failure. However, uninfected branches of Eucalyptus fibrosa F.Muell. had much tighter controls on water loss than uninfected branches of Eucalyptus moluccana Roxb., which shifted the risk of hydraulic failure towards an increased risk of carbon starvation for E. fibrosa. The contrasting mechanistic responses to heat and drought stress between both co-occurring species demonstrates the complexity of host-parasite interactions and highlights the challenge in predicting species-specific responses to biotic agents in a warmer and drier climate.


Assuntos
Secas , Erva-de-Passarinho , Temperatura Alta , Água/fisiologia , Xilema
7.
Phys Rev Lett ; 126(7): 077202, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666484

RESUMO

We experimentally study the thermoelectrical signature of individual skyrmions in chiral Pt/Co/Ru multilayers. Using a combination of controlled nucleation, single skyrmion annihilation, and magnetic field dependent measurements the thermoelectric signature of individual skyrmions is characterized. The observed signature is explained by the anomalous Nernst effect of the skyrmion's spin structure. Possible topological contributions to the observed thermoelectrical signature are discussed. Such thermoelectrical characterization allows for noninvasive detection and counting of skyrmions and enables fundamental studies of topological thermoelectric effects on the nanoscale.

8.
Glob Chang Biol ; 27(12): 2970-2990, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33694242

RESUMO

Rising atmospheric [CO2 ] (Ca ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to Ca . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated Ca (eCa ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial Ca (ambient =380, elevated =620 µmol mol-1 ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both Ca treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing Ca up to 700 µmol mol-1 alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising Ca will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.


Assuntos
Solo , Água , Austrália , Dióxido de Carbono , Fertilização , Folhas de Planta , Árvores
9.
New Phytol ; 229(5): 2535-2547, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217000

RESUMO

Photosynthetic water-use efficiency (WUE) describes the link between terrestrial carbon (C) and water cycles. Estimates of intrinsic WUE (iWUE) from gas exchange and C isotopic composition (δ13 C) differ due to an internal conductance in the leaf mesophyll (gm ) that is variable and seldom computed. We present the first direct estimates of whole-tree gm , together with iWUE from whole-tree gas exchange and δ13 C of the phloem (δ13 Cph ). We measured gas exchange, online 13 C-discrimination, and δ13 Cph monthly throughout spring, summer, and autumn in Eucalyptus tereticornis grown in large whole-tree chambers. Six trees were grown at ambient temperatures and six at a 3°C warmer air temperature; a late-summer drought was also imposed. Drought reduced whole-tree gm . Warming had few direct effects, but amplified drought-induced reductions in whole-tree gm . Whole-tree gm was similar to leaf gm for these same trees. iWUE estimates from δ13 Cph agreed with iWUE from gas exchange, but only after incorporating gm . δ13 Cph was also correlated with whole-tree 13 C-discrimination, but offset by -2.5 ± 0.7‰, presumably due to post-photosynthetic fractionations. We conclude that δ13 Cph is a good proxy for whole-tree iWUE, with the caveats that post-photosynthetic fractionations and intrinsic variability of gm should be incorporated to provide reliable estimates of this trait in response to abiotic stress.


Assuntos
Árvores , Água , Dióxido de Carbono , Isótopos de Carbono , Células do Mesofilo , Fotossíntese , Folhas de Planta
10.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274502

RESUMO

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Assuntos
Ecossistema , Ciência Ambiental , Biodiversidade , Ecologia , Solo
11.
New Phytol ; 228(5): 1511-1523, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531796

RESUMO

Thermoregulation of leaf temperature (Tleaf ) may foster metabolic homeostasis in plants, but the degree to which Tleaf is moderated, and under what environmental contexts, is a topic of debate. Isotopic studies inferred the temperature of photosynthetic carbon assimilation to be a constant value of c. 20°C; by contrast, leaf biophysical theory suggests a strong dependence of Tleaf on environmental drivers. Can this apparent disparity be reconciled? We continuously measured Tleaf and whole-crown net CO2 uptake for Eucalyptus parramattensis trees growing in field conditions in whole-tree chambers under ambient and +3°C warming conditions, and calculated assimilation-weighted leaf temperature (TL-AW ) across 265 d, varying in air temperature (Tair ) from -1 to 45°C. We compared these data to TL-AW derived from wood cellulose δ18 O. Tleaf exhibited substantial variation driven by Tair , light intensity, and vapor pressure deficit, and Tleaf was strongly linearly correlated with Tair with a slope of c. 1.0. TL-AW values calculated from cellulose δ18 O vs crown fluxes were remarkably consistent; both varied seasonally and in response to the warming treatment, tracking variation in Tair . The leaves studied here were nearly poikilothermic, with no evidence of thermoregulation of Tleaf towards a homeostatic value. Importantly, this work supports the use of cellulose δ18 O to infer TL-AW , but does not support the concept of strong homeothermic regulation of Tleaf.


Assuntos
Dióxido de Carbono , Eucalyptus , Árvores , Homeostase , Isótopos de Oxigênio , Fotossíntese , Folhas de Planta , Temperatura
12.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
13.
Tree Physiol ; 40(9): 1192-1204, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32348526

RESUMO

Plant respiration can acclimate to changing environmental conditions and vary between species as well as biome types, although belowground respiration responses to ongoing climate warming are not well understood. Understanding the thermal acclimation capacity of root respiration (Rroot) in relation to increasing temperatures is therefore critical in elucidating a key uncertainty in plant function in response to warming. However, the degree of temperature acclimation of Rroot in rainforest trees and how root chemical and morphological traits are related to acclimation is unknown. Here we investigated the extent to which respiration of fine roots (≤2 mm) of four tropical and four warm-temperate rainforest tree seedlings differed in response to warmer growth temperatures (control and +6 °C), including temperature sensitivity (Q10) and the degree of acclimation of Rroot. Regardless of biome type, we found no consistent pattern in the short-term temperature responses of Rroot to elevated growth temperature: a significant reduction in the temperature response of Rroot to +6 °C treatment was only observed for a tropical species, Cryptocarya mackinnoniana, whereas the other seven species had either some stimulation or no alteration. Across species, Rroot was positively correlated with root tissue nitrogen concentration (mg g-1), while Q10 was positively correlated with root tissue density (g cm-3). Warming increased root tissue density by 20.8% but did not alter root nitrogen across species. We conclude that thermal acclimation capacity of Rroot to warming is species-specific and suggest that root tissue density is a useful predictor of Rroot and its thermal responses in rainforest tree seedlings.


Assuntos
Floresta Úmida , Árvores , Aclimatação , Austrália , Folhas de Planta , Plântula , Temperatura
14.
Small ; 16(11): e1906144, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32037728

RESUMO

The future of consumer electronics depends on the capability to reliably fabricate nanostructures with given physical properties. Therefore, techniques to characterize materials and devices with nanoscale resolution are crucial. Among these is magnetic force microscopy (MFM), which transduces the magnetic force between the sample and a magnetic oscillating probe into a phase shift, enabling the locally resolved study of magnetic field patterns down to 10 nm. Here, the progress done toward making quantitative MFM a common tool in nanocharacterization laboratories is shown. The reliability and ease of use of the calibration method based on a magnetic reference sample, with a calculable stray field, and a deconvolution algorithm is demonstrated. This is achieved by comparing two calibration approaches combined with numerical modeling as a quantitative link: measuring the probe's effect on the voltage signal when scanning above a nanosized graphene Hall sensor, and recording the MFM phase shift signal when the probe scans across magnetic fields produced by metallic microcoils. Furthermore, in the case of the deconvolution algorithm, it is shown how it can be applied using the open-source software package Gwyddion. The estimated magnetic dipole approximation for the most common probes currently in the market is also reported.

15.
Nat Commun ; 11(1): 428, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969569

RESUMO

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity of 6 ± 1 ms-1, the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration.

16.
Sci Total Environ ; 699: 133918, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522048

RESUMO

The critically endangered Cumberland Plain woodland within the greater Sydney metropolitan area hosts a dwindling refuge for melaleuca trees, an integral part of Australia's native vegetation. Despite their high carbon stocks, melaleucas have not explicitly been targeted for studies assessing their carbon sequestration potential, and especially little is known about their energy cycling or their response to increasing climate stress, precluding a holistic assessment of the resilience of Australia's forests to climate change. To improve our understanding of the role of melaleuca forest responses to climate stress, we combined forest inventory and airborne LiDAR data to identify species distribution and associated variations in forest structure, and deployed flux towers in a melaleuca-dominated (AU-Mel) and in a eucalypt-dominated (AU-Cum) stand to simultaneously monitor carbon and energy fluxes under typical growing conditions, as well as during periods with high atmospheric demand and low soil water content. We discovered that the species distribution at our study site affected the vertical vegetation structure, leading to differences in canopy coverage (75% at AU-Cum vs. 84% at AU-Mel) and plant area index (2.1 m2 m-2 at AU-Cum vs. 2.6 m2 m-2 at AU-Mel) that resulted in a heterogeneous forest landscape. Furthermore, we identified that both stands had comparable net daytime carbon exchange and sensible heat flux, whereas daytime latent heat flux (115.8 W m-2 at AU-Cum vs 119.4 W m-2 at AU-Mel, respectively) was higher at the melaleuca stand, contributing to a 0.3 °C decrease in air temperature and reduced vapor pressure deficit above the melaleuca canopy. However, increased canopy conductance and higher latent heat flux during moderate VPD or when soil moisture was low indicated a lack of water preservation at the melaleuca stand, highlighting the potential for increased vulnerability of melaleucas to projected hotter and drier future climates.


Assuntos
Sequestro de Carbono , Monitoramento Ambiental/métodos , Florestas , Tecnologia de Sensoriamento Remoto , Austrália
17.
New Phytol ; 222(3): 1313-1324, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840319

RESUMO

Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations of CO2 . The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE). We quantified respiratory partitioning of gross primary production (GPP) and CUE of field-grown trees in a long-term warming experiment (+3°C). We delivered a 13 C-CO2 pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns. We documented homeostatic respiratory acclimation of foliar and whole-crown respiration rates; the trees adjusted to experimental warming such that leaf-level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the 13 C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained. Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Aquecimento Global , Árvores/metabolismo , Respiração Celular , Marcação por Isótopo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solo/química
18.
J Healthc Risk Manag ; 38(4): 32-42, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30136752

RESUMO

Medical errors are the third-leading cause of death in the United States. One of the problems is timely recognition and management of inappropriate health care worker behaviors that lead to intimidation and loss of staff focus, eventually leading to errors. The purpose of this qualitative modified Delphi study was to seek consensus among a panel of experts in hospital risk management practices on the practical methods for early detection of inappropriate behaviors among hospital staff, which may be used by hospital managers to considerably mitigate the risk of medical mishaps. High reliability theory guided the research process, utilizing the conceptual framework of the fair and just culture patient safety model. A single research question asked what level of consensus exists among hospital risk management experts as to the practical methods for early detection of inappropriate behavior among hospital staff, which managers may use to ultimately mitigate the risk of preventable medical mishaps. This study included nonprobability purposive sampling (n = 34) and three rounds of questionnaires. Consensus was reached on 8 factors: setting expectations, developing a culture of respect, holding staff accountable, enforcing a zero-tolerance policy, confidentiality of reporting, communicating expected behavior, open communication, and investigating inappropriate behaviors.


Assuntos
Administradores Hospitalares/psicologia , Erros Médicos/prevenção & controle , Erros Médicos/psicologia , Administração de Recursos Humanos em Hospitais/métodos , Recursos Humanos em Hospital/psicologia , Má Conduta Profissional/psicologia , Gestão de Riscos/métodos , Adulto , Currículo , Técnica Delphi , Educação Médica Continuada , Estudos de Avaliação como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Inquéritos e Questionários , Estados Unidos
19.
New Phytol ; 222(3): 1298-1312, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30536971

RESUMO

The allocation of carbon (C) is an important component of tree physiology that influences growth and ecosystem C storage. Allocation is challenging to measure, and its sensitivity to environmental changes such as warming and altered water availability is uncertain. We exposed young Eucalyptus tereticornis trees to +3°C warming and elimination of summer precipitation in the field using whole-tree chambers. We calculated C allocation terms using detailed measurements of growth and continuous whole-crown CO2 and water exchange measurements. Trees grew from small saplings to nearly 9 m height during this 15-month experiment. Warming accelerated growth and leaf area development, and it increased the partitioning of gross primary production (GPP) to aboveground respiration and growth while decreasing partitioning below ground. Eliminating summer precipitation reduced C gain and growth but did not impact GPP partitioning. Trees utilized deep soil water and avoided strongly negative water potentials. Warming increased growth respiration, but maintenance respiration acclimated homeostatically. The increasing growth in the warmed treatment resulted in higher rates of respiration, even with complete acclimation of maintenance respiration. Warming-induced stimulations of tree growth likely involve increased C allocation above ground, particularly to leaf area development, whereas reduced water availability may not stimulate allocation to roots.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Temperatura , Árvores/crescimento & desenvolvimento , Água/metabolismo , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular , Secas , Folhas de Planta/fisiologia , Solo/química
20.
J Anim Ecol ; 87(5): 1475-1483, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29700820

RESUMO

Animal mutualisms, which involve beneficial interactions between individuals of different species, are common in nature. Insect-insect mutualism, for example, is widely regarded as a keystone ecological interaction. Some mutualisms are anticipated to be modified by climate change, but the focus has largely been on plant-microbe and plant-animal mutualisms rather than those between animals. Ant-aphid mutualisms, whereby ants tend aphids to harvest their honeydew excretions and, in return, provide protection for the aphids, are widespread. The mutualism is heavily influenced by the quality and quantity of honeydew produced by aphids, which is directly affected by host plant quality. As predicted increases in concentrations of atmospheric carbon dioxide (eCO2 ) are widely reported to affect plant nutritional chemistry, this may also alter honeydew quality and hence the nature of ant-aphid mutualisms. Using glasshouse chambers and field-based open-top chambers, we determined the effect of eCO2 on the growth and nutritional quality (foliar amino acids) of lucerne (Medicago sativa). We determined how cowpea aphid (Aphis craccivora) populations and honeydew production were impacted when feeding on such plants and how this affected the tending behaviour of ants (Iridomyrmex sp.). eCO2 stimulated plant growth but decreased concentrations of foliar amino acids by 29% and 14% on aphid-infested plants and aphid-free plants, respectively. Despite the deterioration in host plant quality under eCO2 , aphids maintained performance and populations were unchanged by eCO2 . Aphids induced higher concentrations of amino acids (glutamine, asparagine, glutamic acid and aspartic acid) important for endosymbiont-mediated synthesis of essential amino acids. Aphids feeding under eCO2 also produced over three times more honeydew than aphids feeding under ambient CO2 , suggesting they were imbibing more phloem sap at eCO2 . The frequency of ant tending of aphids more than doubled in response to eCO2 . To our knowledge, this is the first study to demonstrate the effects of atmospheric change on an ant-aphid mutualism. In particular, these results highlight how impending changes to concentrations of atmospheric CO2 may alter mutualistic behaviour between animals. These could include positive impacts, as reported here, shifts from mutualism to antagonism, partner switches and mutualism abandonment.


Assuntos
Formigas , Afídeos , Animais , Dióxido de Carbono , Plantas , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...