Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 40(4): 447-51, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18357017

RESUMO

We describe the advantages of using diffractive (Fresnel) lenses on thin membranes over conventional optics for, among others, future space telescope projects. Fabrication methods are presented for lenses on two types of freestanding membrane up to 50 cm in size. The first is a Fresnel lens etched into a thin (380-microm) glass sheet, and the second is an approximately 50-microm-thick polymer membrane containing a Fresnel lens made by replication process from a specially made fused-silica master. We show optical performance analysis of all the lenses that are fabricated, including a diffraction-limited Airy spot from a 20-m- focal-length membrane lens in a diffractive telescope system.

2.
Opt Lett ; 25(1): 1-3, 2000 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18059762

RESUMO

A diffractive Alvarez lens is demonstrated that consists of two separate phase plates, each having complementary 16-level surface-relief profiles that contain cubic phase delays. Translation of these two components in the plane of the phase plates is shown to produce a variable astigmatic focus. Both spherical and cylindrical phase profiles are demonstrated with good accuracy, and the discrete surface-relief features are shown to cause less than lambda/10 wave-front aberration in the transmitted wave front over a 40 mm x 80 mm region.

3.
Opt Lett ; 23(3): 198-200, 1998 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18084458

RESUMO

We report what we believe to be the first applications of numerical optimization algorithms to the design of diffractive elements that customize the fundamental mode profile of a laser system. Standard design techniques treat these elements as specific phase-conjugation devices, which leads to performance loss when they are quantized to permit fabrication. Numerical optimization can account for quantization of the element to increase the effective performance. Also, it is shown that allowing a slight increase in the intrinsic loss of the cavity can substantially increase the fidelity of the fundamental mode of the customized cavity. The good discrimination qualities of the mode-selection elements are shown to be unaffected by this process.

4.
Appl Opt ; 36(35): 9132-7, 1997 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-18264470

RESUMO

Space-invariant, multilevel, diffractive phase elements are designed for large-scale pattern-formation tasks. The importance of the design algorithm and the phase-encoding geometry of the diffractive element is discussed with regard to the performance of both on- and off-axis reconstruction, notably for pixelated gratings. A new phase-encoding scheme is presented that results in an increase of the diffraction efficiency for the off-axis case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...