Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 29(8): 1235-1248.e8, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34214492

RESUMO

The epidermis forms a barrier that defends the body from desiccation and entry of harmful substances, while also sensing and integrating environmental signals. The tightly orchestrated cellular changes needed for the formation and maintenance of this epidermal barrier occur in the context of the skin microbiome. Using germ-free mice, we demonstrate the microbiota is necessary for proper differentiation and repair of the epidermal barrier. These effects are mediated by microbiota signaling through the aryl hydrocarbon receptor (AHR) in keratinocytes, a xenobiotic receptor also implicated in epidermal differentiation. Mice lacking keratinocyte AHR are more susceptible to barrier damage and infection, during steady-state and epicutaneous sensitization. Colonization with a defined consortium of human skin isolates restored barrier competence in an AHR-dependent manner. We reveal a fundamental mechanism whereby the microbiota regulates skin barrier formation and repair, which has far-reaching implications for the numerous skin disorders characterized by epidermal barrier dysfunction.


Assuntos
Microbiota/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Pele/microbiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Linhagem Celular , Células Epidérmicas/metabolismo , Células Epidérmicas/patologia , Epiderme/metabolismo , Feminino , Humanos , Queratinócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/patologia , Dermatopatias/microbiologia
2.
Front Pediatr ; 7: 326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448249

RESUMO

Objectives: Since 2010, several researches demonstrated that microbiota dynamics correlate and can even predispose to Hirschsprung (HSCR) associated enterocolitis (HAEC). This study aims at assessing the structure of the microbiota of HSCR patients in relation to extent of aganglionosis and HAEC status. Methods: All consecutive HSCR patients admitted to Gaslini Institute (Genova, Italy) between May 2012 and November 2014 were enrolled. Institutional review board (IRB) approval was obtained. Stools were sampled and 16S rDNA V3-V4 regions were sequenced using the Illumina-MiSeq. Taxonomy assignments were performed using QIIME RDP. Alpha diversity indexes were analyzed by Shannon and Simpson Indexes, and Phylogenetic Diversity. Results: We enrolled 20 patients. Male to female ratio was 4:1. Six patients suffered from Total Colonic Aganglionosis (TCSA). Considering sample site (i.e., extent of aganglionosis), we confirmed the known relationship between sample site and both biodiversity and composition of intestinal microbiota. Patients with TCSA showed lower biodiversity and increased Proteobacteria/Bacteroidetes relative abundance ratio. When addressing biodiversity, composition and dynamics of TCSA patients we could not find any significant relationship with regard to HAEC occurrences. Conclusions: The composition of HAEC predisposing microbiota is specific to each patient. We could confirm that total colon resections can change the composition of intestinal microbiota and to dramatically reduce microbial diversity. The subsequent reduction of system robustness could expose TCSA patients to environmental microbes that might not be part of the normal microbiota. Future long-term studies should investigate both patients and their family environment, as well as their disease history.

3.
J Orthop Res ; 37(12): 2645-2654, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31317568

RESUMO

Percutaneous osseointegrated (OI) prostheses (POPs) are used to skeletally attach artificial limbs in amputees. While any permanent percutaneous interface is at risk of becoming infected by the resident microbiota colonizing the stoma, most of these patients remain infection-free. Avoidance of infection likely depends upon a mechanically and/or biologically stable skin-to-implant interface. The ultimate question remains, "why do some stomata become infected while others do not?" The answer might be found in the dynamic bacterial communities of the patient and within the stomal site itself. This study is an appendix to the first Food and Drug Administration approved prospective early feasibility study of OI prosthetic docking, in which, 10 transfemoral amputees were implanted with a unique POP device. In this analytical, longitudinal cohort study, each patient's skin and stomal microbiota were analyzed from the initial surgery to 1 year following the second-stage surgery. During each follow-up visit, three swab samples-stomal, device thigh skin and contralateral thigh skin-were obtained. DNA was extracted, and bacterial 16S ribosomal RNA (rRNA) genes were amplified and sequenced to profile microbial communities. The stomal microbiota were distinct from the microbiota on the adjacent thigh skin and the skin of the contralateral thigh, with a significantly increased abundance of Staphylococcus aureus within the stoma. Early on stomal microbiota were characterized by high diversity and high relative abundance of obligate anaerobes. Over time, the stomal microbiota shifted and stabilized in communities of lower diversity dominated by Streptococcus, Corynebacterium, and/or Staphylococcus spp. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2645-2654, 2019.


Assuntos
Microbioma Gastrointestinal , Osseointegração , Implantação de Prótese , Pele/microbiologia , Estômago/microbiologia , Humanos , Estudos Longitudinais , Estudos Prospectivos , Estomas Cirúrgicos/microbiologia
4.
J Invest Dermatol ; 139(4): 747-752.e1, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30904077

RESUMO

Skin is colonized by microbial communities (microbiota) that participate in immune homeostasis, development and maintenance of barrier function, and protection from pathogens. The past decade has been marked by an increased interest in the skin microbiota and its role in cutaneous health and disease, in part due to advances in next-generation sequencing platforms that enable high-throughput, culture-independent detection of bacteria, fungi, and viruses. Various approaches, including bacterial 16S ribosomal RNA gene sequencing and metagenomic shotgun sequencing, have been applied to profile microbial communities colonizing healthy skin and diseased skin including atopic dermatitis, psoriasis, and acne, among others. Here, we provide an overview of culture-dependent and -independent approaches to profiling the skin microbiota and the types of questions that may be answered by each approach. We additionally highlight important study design considerations, selection of controls, interpretation of results, and limitations and challenges.


Assuntos
Bactérias/genética , Pesquisa Biomédica/métodos , Dermatite/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma/genética , Microbiota/genética , Pele/microbiologia , Bactérias/isolamento & purificação , Dermatite/microbiologia , Dermatite/patologia , Humanos , Análise de Sequência de DNA , Pele/patologia
5.
Antioxidants (Basel) ; 8(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621138

RESUMO

The reactions of antioxidants with superoxide radical were studied by cyclic voltammetry (CV)-and hydrodynamic voltammetry at a rotating ring-disk electrode (RRDE). In both methods, the superoxide is generated in solution from dissolved oxygen and then measured after being allowed to react with the antioxidant being studied. Both methods detected and measured the radical scavenging but the RRDE was able to give detailed insight into the antioxidant behavior. Three flavonoids, chrysin, quercetin and eriodictyol, were studied, their scavenging activity of superoxide was assessed and the molecular structure of each flavonoid was related to its scavenging capability. From our improved and novel RRDE method, we determine the ability of these 3 antioxidants to react with superoxide radical in a more quantitative manner than the classical CV. Density Functional Theory (DFT) and single crystal X-ray diffraction data provide structural information that assists in clarifying the scavenging molecular mechanism. Hydroxyls associated with the A ring, as found in chrysin, scavenge superoxide in a different manner than those found in the B ring of flavonoids, as those in quercetin and eriodictyol.

6.
Genome Biol ; 19(1): 82, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950165

RESUMO

Culture-independent analysis of microbial communities frequently relies on amplification and sequencing of the prokaryotic 16S ribosomal RNA gene. Typical analysis pipelines group sequences into operational taxonomic units (OTUs) to infer taxonomic and phylogenetic relationships. Here, we present HmmUFOtu, a novel tool for processing microbiome amplicon sequencing data, which performs rapid per-read phylogenetic placement, followed by phylogenetically informed clustering into OTUs and taxonomy assignment. Compared to standard pipelines, HmmUFOtu more accurately and reliably recapitulates microbial community diversity and composition in simulated and real datasets without relying on heuristics or sacrificing speed or accuracy.


Assuntos
Microbiota/genética , Algoritmos , Análise por Conglomerados , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
7.
Wound Repair Regen ; 26(2): 127-135, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29802752

RESUMO

Open fractures are characterized by disruption of the skin and soft tissue, which allows for microbial contamination and colonization. Preventing infection-related complications of open fractures and other acute wounds remains an evolving challenge due to an incomplete understanding of how microbial colonization and contamination influence healing and outcomes. Culture-independent molecular methods are now widely used to study human-associated microbial communities without introducing culture biases. Using such approaches, the objectives of this study were to (1) define the long-term temporal microbial community dynamics of open fracture wounds and (2) examine microbial community dynamics with respect to clinical and demographic factors. Fifty-two subjects with traumatic open fracture wounds (32 blunt and 20 penetrating injuries) were enrolled prospectively and sampled longitudinally from presentation to the emergency department (ED) and at each subsequent inpatient or outpatient encounter. Specimens were collected from both the wound center and adjacent skin. Culture-independent sequencing of the 16S ribosomal RNA gene was employed to identify and characterize microbiota. Upon presentation to the ED and time points immediately following, sample collection site (wound or adjacent skin) was the most defining feature discriminating microbial profiles. Microbial composition of adjacent skin and wound center converged over time. Mechanism of injury most strongly defined the microbiota after initial convergence. Further analysis controlling for race, gender, and age revealed that mechanism of injury remained a significant discriminating feature throughout the continuum of care. We conclude that the microbial communities associated with open fracture wounds are dynamic in nature until eventual convergence with the adjacent skin community during healing, with mechanism of injury as an important feature affecting both diversity and composition of the microbiota. A more complete understanding of the factors influencing microbial contamination and/or colonization in open fractures is a critical foundation for identifying markers indicative of outcome and deciphering their respective contributions to healing and/or complication.


Assuntos
Bactérias/classificação , Fraturas Expostas/microbiologia , Microbiota/fisiologia , Pele/microbiologia , Cicatrização/fisiologia , Infecção dos Ferimentos/microbiologia , Adulto , Idoso , Bactérias/genética , Contagem de Colônia Microbiana , Feminino , Fraturas Expostas/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pennsylvania , Estudos Prospectivos , RNA Ribossômico 16S/genética , Infecção dos Ferimentos/classificação , Adulto Jovem
8.
Am J Trop Med Hyg ; 98(3): 724-734, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363461

RESUMO

Although not presently implicated as a vector of human pathogens, the common bed bug, Cimex lectularius, has been suspected of carrying human pathogens because of its close association with humans and its obligate hematophagy. Recently, we characterized the vectorial competence of C. lectularius for the parasite Trypanosoma cruzi, the causative agent of Chagas disease. We observed that C. lectularius can acquire T. cruzi infection when fed on T. cruzi-carrying mice, and subsequently transmit T. cruzi to uninfected mice. This led us to ask why has C. lectularius not been implicated in the transmission of T. cruzi outside of the laboratory? We hypothesized that T. cruzi reduces C. lectularius fitness (i.e., survival and/or reproduction) as an explanation for why C. lectularius does not to transmit T. cruzi in natural settings. We tested this hypothesis by comparing the survival and reproduction of uninfected and T. cruzi-infected C. lectularius. We observed that T. cruzi had a variable effect on C. lectularius survival and reproduction. There were negligible differences between treatments in juveniles. Infected adult females tended to live longer and produce more eggs. However, no effect was consistent, and infected bugs showed more variation in survival and reproduction metrics than control bugs. We did not observe any negative effects of T. cruzi infection on C. lectularius survival or reproduction, suggesting that decreased fitness in T. cruzi-infected C. lectularius is not why bed bugs have not been observed to transmit T. cruzi in natural settings.


Assuntos
Percevejos-de-Cama/fisiologia , Percevejos-de-Cama/parasitologia , Doença de Chagas/transmissão , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Animais , Feminino , Cobaias , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Probabilidade , Reprodução
9.
Microbiome ; 6(1): 20, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378633

RESUMO

BACKGROUND: The skin harbors complex communities of resident microorganisms, yet little is known of their physiological roles and the molecular mechanisms that mediate cutaneous host-microbe interactions. Here, we profiled skin transcriptomes of mice reared in the presence and absence of microbiota to elucidate the range of pathways and functions modulated in the skin by the microbiota. RESULTS: A total of 2820 genes were differentially regulated in response to microbial colonization and were enriched in gene ontology (GO) terms related to the host-immune response and epidermal differentiation. Innate immune response genes and genes involved in cytokine activity were generally upregulated in response to microbiota and included genes encoding toll-like receptors, antimicrobial peptides, the complement cascade, and genes involved in IL-1 family cytokine signaling and homing of T cells. Our results also reveal a role for the microbiota in modulating epidermal differentiation and development, with differential expression of genes in the epidermal differentiation complex (EDC). Genes with correlated co-expression patterns were enriched in binding sites for the transcription factors Klf4, AP-1, and SP-1, all implicated as regulators of epidermal differentiation. Finally, we identified transcriptional signatures of microbial regulation common to both the skin and the gastrointestinal tract. CONCLUSIONS: With this foundational approach, we establish a critical resource for understanding the genome-wide implications of microbially mediated gene expression in the skin and emphasize prospective ways in which the microbiome contributes to skin health and disease.


Assuntos
Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Pele/microbiologia , Animais , Diferenciação Celular , Trato Gastrointestinal/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata , Fator 4 Semelhante a Kruppel , Camundongos , Microbiota , Especificidade de Órgãos , Análise de Sequência de RNA/métodos , Pele/imunologia
10.
Nature ; 535(7612): 440-443, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27409807

RESUMO

Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial­ILC3­epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.


Assuntos
Imunidade Inata , Intestinos/imunologia , Linfócitos/imunologia , Neuroglia/metabolismo , Neurotransmissores/metabolismo , Animais , Microambiente Celular/imunologia , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas , Inflamação/imunologia , Inflamação/metabolismo , Interleucinas/biossíntese , Interleucinas/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestinos/citologia , Linfócitos/citologia , Linfócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Neuroglia/imunologia , Neurotransmissores/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-ret/deficiência , Proteínas Proto-Oncogênicas c-ret/metabolismo , Fator de Transcrição STAT3/metabolismo , Interleucina 22
11.
PLoS One ; 10(8): e0134588, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26248298

RESUMO

Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67-72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil microbes, may therefore be a useful model system to investigate both microbial and viral ecology.


Assuntos
Bactérias/genética , Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/fisiologia , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Chloroflexi/virologia , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/virologia , Ecossistema , Luz , Fotografação , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
12.
Virus Genes ; 48(1): 38-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24078045

RESUMO

Poxviruses are dsDNA viruses with large genomes. Many genes in the genome remain uncharacterized, and recent studies have demonstrated that the poxvirus transcriptome includes numerous so-called anomalous transcripts not associated with open reading frames. Here, we characterize the expression and role of an apparently non-coding RNA in orthopoxviruses, which we call viral hairpin RNA (vhRNA). Using a bioinformatics approach, we predicted expression of a transcript not associated with an open reading frame that is likely to form a stem-loop structure due to the presence of a 21 nt palindromic sequence. Expression of the transcript as early as 2 h post-infection was confirmed by northern blot and analysis of publicly available vaccinia virus infected cell transcriptomes. The transcription start site was determined by RACE PCE and transcriptome analysis, and early and late promoter sequences were identified. Finally, to test the function of the transcript we generated an ectromelia virus knockout, which failed to form plaques in cell culture. The important role of the transcript in viral replication was further demonstrated using siRNA. Although the function of the transcript remains unknown, our work contributes to evidence of an increasingly complex poxvirus transcriptome, suggesting that transcripts such as vhRNA not associated with an annotated open reading frame can play an important role in viral replication.


Assuntos
Vírus da Ectromelia/crescimento & desenvolvimento , Vírus da Ectromelia/genética , Regulação Viral da Expressão Gênica , Expressão Gênica , RNA não Traduzido/biossíntese , Ensaio de Placa Viral , Animais , Northern Blotting , Linhagem Celular , Chlorocebus aethiops , Biologia Computacional , Técnicas de Inativação de Genes , Macaca mulatta , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...