Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Cancers (Basel) ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892888

RESUMO

Most metastatic colorectal cancer (mCRC) patients succumb to refractory disease due to secondary chemotherapy resistance. To elucidate the molecular changes associated with secondary resistance, we recruited 64 patients with mCRC and hepatic metastases before standard first-line chemotherapy between 2014 and 2018. We subjected DNA from primary tumor specimens (P), hepatic metastasis specimens after treatment (M), and liquid biopsies (L) taken prior to (pre), during (intra), and after (post) treatment to next generation sequencing. We performed Nanostring expression analysis in P and M specimens. Comparative bioinformatics and statistical analysis revealed typical mutational patterns with frequent alterations in TP53, APC, and KRAS in P specimens (n = 48). P and pre-L (n = 42), as well as matched P and M (n = 30), displayed a similar mutation spectrum. In contrast, gene expression profiles classified P (n = 31) and M (n = 23), distinguishable by up-regulation of immune/cytokine receptor and autophagy programs. Switching of consensus molecular subtypes from P to M occurred in 58.3% of cases. M signature genes SFRP2 and SPP1 associated with inferior survival, as validated in an independent cohort. Molecular changes during first-line treatment were detectable by expression profiling rather than by mutational tumor and liquid biopsy analyses. SFRP2 and SPP1 may serve as biomarkers and/or actionable targets.

3.
Nature ; 605(7911): 747-753, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585241

RESUMO

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Fosfoglicerato Desidrogenase , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Camundongos , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo
4.
Nat Commun ; 13(1): 1589, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332140

RESUMO

Progressive respiratory failure and hyperinflammatory response is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. Despite mounting evidence of disruption of the hypothalamus-pituitary-adrenal axis in COVID-19, relatively little is known about the tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to adrenal glands and associated changes. Here we demonstrate adrenal viral tropism and replication in COVID-19 patients. Adrenal glands showed inflammation accompanied by inflammatory cell death. Histopathologic analysis revealed widespread microthrombosis and severe adrenal injury. In addition, activation of the glycerophospholipid metabolism and reduction of cortisone intensities were characteristic for COVID-19 specimens. In conclusion, our autopsy series suggests that SARS-CoV-2 facilitates the induction of adrenalitis. Given the central role of adrenal glands in immunoregulation and taking into account the significant adrenal injury observed, monitoring of developing adrenal insufficiency might be essential in acute SARS-CoV-2 infection and during recovery.


Assuntos
COVID-19 , Autopsia , Humanos , Pesquisa , SARS-CoV-2 , Tropismo
5.
Oncogenesis ; 10(11): 78, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785636

RESUMO

Intraocular medulloepithelioma (IO-MEPL) is a rare embryonal ocular neoplasm, prevalently occurring in children. IO-MEPLs share histomorphological features with CNS embryonal tumors with multilayered rosettes (ETMRs), referred to as intracranial medulloepitheliomas. While Sonic hedgehog (SHH) and WNT signaling pathways are crucial for ETMR pathogenesis, the impact of these pathways on human IO-MEPL development is unclear. Gene expression analyses of human embryonal tumor samples revealed similar gene expression patterns and significant overrepresentation of SHH and WNT target genes in both IO-MEPL and ETMR. In order to unravel the function of Shh and Wnt signaling for IO-MEPL pathogenesis in vivo, both pathways were activated in retinal precursor cells in a time point specific manner. Shh and Wnt co-activation in early Sox2- or Rax-expressing precursor cells resulted in infiltrative ocular lesions that displayed extraretinal expansion. Histomorphological, immunohistochemical, and molecular features showed a strong concordance with human IO-MEPL. We demonstrate a relevant role of WNT and SHH signaling in IO-MEPL and report the first mouse model to generate tumor-like lesions with features of IO-MEPL. The presented data may be fundamental for comprehending IO-MEPL initiation and developing targeted therapeutic approaches.

7.
Medicina (Kaunas) ; 56(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963334

RESUMO

A possible cause of hypophosphatemia is paraneoplastic secretion of fibroblast growth factor 23 (FGF-23). Tumors secreting FGF-23 are rare, mostly of mesenchymal origin, usually benign, and may be located anywhere in the body, including hands and feet, which are often not represented in conventional imaging. A 50-year-old woman presented with diffuse musculoskeletal pain and several fractures. Secondary causes of osteoporosis were excluded. Laboratory analysis revealed hypophosphatemia and elevated alkaline phosphatase, parathyroid hormone, and FGF-23. Thus, oncogenic osteomalacia due to neoplastic FGF-23 secretion was suspected. FDG-PET-CT and DOTATATE-PET-CT imaging demonstrated no tumor. Cranial MRI revealed a tumorous mass in the left cellulae ethmoidales. The tumor was resected and histopathological examination showed a cell-rich tumor with round to ovoid nuclei, sparse cytoplasm, and sparse matrix, resembling an olfactory neuroblastoma. Immunohistochemical analysis first led to diagnosis of olfactory neuroblastoma, which was later revised to phosphaturic mesenchymal tumor. Following the resection, FGF-23 and phosphate levels normalized. In conclusion, we here describe a patient with an FGF-23-secreting phosphaturic mesenchymal tumor with an unusual morphology. Furthermore, we emphasize diagnostic pitfalls when dealing with FGF-23-induced hypophosphatemia.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Hipofosfatemia/sangue , Neoplasias de Tecido Conjuntivo/etiologia , Neoplasias Cranianas/sangue , Osso Etmoide/patologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Hipofosfatemia/complicações , Pessoa de Meia-Idade , Osteomalacia , Síndromes Paraneoplásicas , Neoplasias Cranianas/complicações
8.
BMC Med Genomics ; 11(1): 80, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236106

RESUMO

BACKGROUND: The transition from ductal carcinoma in situ (DCIS) to invasive breast carcinoma (IBC) is an important step during breast carcinogenesis. Understanding its molecular changes may help to identify high-risk DCIS that progress to IBC. Here, we describe a transcriptomic profiling analysis of matched formalin-fixed and paraffin-embedded (FFPE) DCIS and IBC components of individual breast tumours, containing both tumour compartments. The study was performed to validate progression-associated transcripts detected in an earlier gene profiling project using fresh frozen breast cancer tissue. In addition, FFPE tissues from patients with pure DCIS (pDCIS) were analysed to identify candidate transcripts characterizing DCIS with a high or low risk of progressing to IBC. METHODS: Fifteen laser microdissected pairs of DCIS and IBC were profiled by Illumina DASL technology and used for expression validation by qPCR. Differential expression was independently validated using further 25 laser microdissected DCIS/IBC sample pairs. Additionally, laser microdissected epithelial cells from 31 pDCIS were investigated for expression of candidate transcripts using qPCR. RESULTS: Multiple statistical calculation methods revealed 1784 mRNAs which are differentially expressed between DCIS and IBC (P < 0.05), of which 124 have also been identified in the gene profiling project using fresh frozen breast cancer tissue. Nine mRNAs that had been selected from the gene list obtained using fresh frozen tissues by applying pathway and network analysis (MMP11, GREM1, PLEKHC1, SULF1, THBS2, CSPG2, COL10A1, COL11A1, KRT14) were investigated in tissues from the same 15 microdissected specimens and the 25 independent tissue samples by qPCR. All selected transcripts were also detected in tumour cells from pDCIS. Expression of MMP11 and COL10A1 increased significantly from pDCIS to DCIS of DCIS/IBC mixed tumours. CONCLUSION: We confirm differential expression of progression-associated transcripts in FFPE breast cancer samples which might mediate the transition from DCIS to IBC. MMP11 and COL10A1 may characterize pure DCIS with a high risk developing IDC.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Progressão da Doença , Feminino , Formaldeído/química , Redes Reguladoras de Genes , Humanos , Inclusão em Parafina , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Front Pharmacol ; 9: 699, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022949

RESUMO

Idiosyncratic drug-induced liver injury (iDILI) is a major cause of acute liver failure resulting in liver transplantation or death. Prediction and diagnosis of iDILI remain a great challenge, as current models provide unsatisfying results in terms of sensitivity, specificity, and prognostic value. The absence of appropriate tools for iDILI detection also impairs the development of reliable biomarkers. Here, we report on a new method for identification of drug-specific biomarkers. We combined the advantages of monocyte-derived hepatocyte-like (MH) cells, able to mimic individual characteristics, with those of a novel mass spectrometry-based proteomics technology to assess potential biomarkers for Diclofenac-induced DILI. We found over 2,700 proteins differentially regulated in MH cells derived from individual patients. Herefrom, we identified integrin beta 3 (ITGB3) to be specifically upregulated in Diclofenac-treated MH cells from Diclofenac-DILI patients compared to control groups. Finally, we validated ITGB3 by flow cytometry analysis of whole blood and histological staining of liver biopsies derived from patients diagnosed with Diclofenac-DILI. In summary, our results show that biomarker candidates can be identified by proteomics analysis of MH cells. Application of this method to a broader range of drugs in the future will exploit its full potential for the development of drug-specific biomarkers. Data are available via ProteomeXchange with identifier PXD008918.

10.
Invest Radiol ; 53(1): 26-34, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28846552

RESUMO

OBJECTIVES: Grating-based phase-contrast computed tomography (gb-PCCT) relies on x-ray refraction instead of absorption to generate high-contrast images in biological soft tissue. The aim of this study was to evaluate the potential of gb-PCCT for the depiction of structural changes in heart disease. MATERIALS AND METHODS: Four human heart specimens from patients with hypertensive disease, ischemic disease, dilated heart disease, and cardiac lipomatosis were examined. The gb-PCCT setup consisted of an x-ray tube (40 kV, 70 mA), grating-interferometer, and detector, and allowed simultaneous acquisition of phase- and absorption-contrast data. With histopathology as the standard of reference, myocardium (MC), fibrotic scar (FS), interstitial fibrosis (IF), and fatty tissue (FT) were visually and quantitatively evaluated. Systematic differences in absorption- and phase-contrast Hounsfield units (HUabs and HUp) were assessed. RESULTS: Thirteen corresponding cross-sections were included, and MC, FS, IF, and FT were found in 13 (100%), 4 (30.8%), 7 (53.8%), and 13 (100%) cross-sections, respectively. Mean HUp/HUabs were 52.5/54.1, 86.6/69.7, 62.4/62.3, and -38.6/-258.9 for MC, FS, IF, and FT, respectively. An overlap in HUabs was observed for MC and IF (P = 0.84) but not for HUp (P < 0.01). Contrast-to-noise ratios were significantly higher in phase- than in absorption-contrast for MC/FT (35.4 vs 7.8; P < 0.01) and for MC/FS (12.3 vs 0.2; P < 0.01). CONCLUSIONS: Given its superior soft tissue contrast, gb-PCCT is able to depict structural changes in different cardiomyopathies, which can currently not be obtained by x-ray absorption-based imaging methods. If current technical limitations can be overcome, gb-PCCT may evolve as a powerful tool for the anatomical assessment of cardiomyopathy.


Assuntos
Meios de Contraste , Cardiopatias/diagnóstico por imagem , Coração/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Estudos de Avaliação como Assunto , Humanos , Reprodutibilidade dos Testes
11.
Eur J Radiol ; 94: 38-45, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28941758

RESUMO

OBJECTIVES: Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. METHODS: Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. RESULTS: Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. CONCLUSIONS: Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Autopsia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Doença da Artéria Coronariana/patologia , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes
13.
Nat Immunol ; 18(1): 74-85, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893700

RESUMO

The cellular sources of interleukin 6 (IL-6) that are relevant for differentiation of the TH17 subset of helper T cells remain unclear. Here we used a novel strategy for the conditional deletion of distinct IL-6-producing cell types to show that dendritic cells (DCs) positive for the signaling regulator Sirpα were essential for the generation of pathogenic TH17 cells. Using their IL-6 receptor α-chain (IL-6Rα), Sirpα+ DCs trans-presented IL-6 to T cells during the process of cognate interaction. While ambient IL-6 was sufficient to suppress the induction of expression of the transcription factor Foxp3 in T cells, trans-presentation of IL-6 by DC-bound IL-6Rα (called 'IL-6 cluster signaling' here) was needed to prevent premature induction of interferon-γ (IFN-γ) expression in T cells and to generate pathogenic TH17 cells in vivo. Our findings should guide therapeutic approaches for the treatment of TH17-cell-mediated autoimmune diseases.


Assuntos
Sistema Nervoso Central/imunologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Subunidade alfa de Receptor de Interleucina-6/genética , Interleucina-6/metabolismo , Células Th17/imunologia , Animais , Autoimunidade , Diferenciação Celular , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
14.
Brachytherapy ; 16(1): 207-214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27693170

RESUMO

PURPOSE: Ostial restenosis is a common cause of failures in paranasal sinus surgery. The aim of the current study was to investigate the use of low-dose-rate brachytherapy to prevent neo-ostial restenosis in an animal model. METHODS AND MATERIALS: In 14 rabbits, maxillary neo-ostia were created and measured. One side each was stented with a regular silicone stent, the other side was either not stented (n = 7) or stented with a phosphorous-32 implanted stent depositing a low-dose radiation of 15 Gy (n = 7) within 1 week, after which all stents were removed. After a period of additional 12 weeks of recovery, the animals were sacrificed, the neo-ostia were again measured, and the areas and histopathologic changes compared in between the groups. RESULTS: After 15-Gy stenting, the mean ostial areas were even slightly enlarged by 5.1% compared to the area at stent removal, whereas a significant reduction in area, indicating a process of restenosis, by 56.1% or 54.0% was seen in the control groups with no stent and normal stent, respectively. Furthermore, no indication for adverse histopathologic radiation effects was seen in the 15-Gy group. CONCLUSIONS: Low-dose-rate brachytherapy with phosphorous-32 doped silicone stents showed promising results in the prevention of neo-ostium restenosis in this proof-of-concept study, indicating that further preclinical and clinical testing may be warranted.


Assuntos
Braquiterapia/métodos , Constrição Patológica/prevenção & controle , Seio Maxilar/cirurgia , Doenças dos Seios Paranasais/cirurgia , Radioisótopos de Fósforo/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Stents , Animais , Coelhos
15.
Elife ; 52016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991852

RESUMO

Mg2+ regulates many physiological processes and signalling pathways. However, little is known about the mechanisms underlying the organismal balance of Mg2+. Capitalizing on a set of newly generated mouse models, we provide an integrated mechanistic model of the regulation of organismal Mg2+ balance during prenatal development and in adult mice by the ion channel TRPM6. We show that TRPM6 activity in the placenta and yolk sac is essential for embryonic development. In adult mice, TRPM6 is required in the intestine to maintain organismal Mg2+ balance, but is dispensable in the kidney. Trpm6 inactivation in adult mice leads to a shortened lifespan, growth deficit and metabolic alterations indicative of impaired energy balance. Dietary Mg2+ supplementation not only rescues all phenotypes displayed by Trpm6-deficient adult mice, but also may extend the lifespan of wildtype mice. Hence, maintenance of organismal Mg2+ balance by TRPM6 is crucial for prenatal development and survival to adulthood.


Assuntos
Desenvolvimento Embrionário , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Magnésio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Feminino , Técnicas de Inativação de Genes , Camundongos , Placenta/enzimologia , Placenta/metabolismo , Gravidez , Análise de Sobrevida , Canais de Cátion TRPM/genética , Saco Vitelino/enzimologia , Saco Vitelino/metabolismo
16.
Development ; 142(18): 3239-51, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26071498

RESUMO

We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis.


Assuntos
Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/fisiologia , Morfogênese/fisiologia , Organoides/fisiologia , Regeneração/fisiologia , Separação Celular/métodos , Colágeno , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Técnicas de Diluição do Indicador , Neprilisina/metabolismo
17.
Cell Rep ; 10(2): 131-9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25578726

RESUMO

Master regulators of the epithelial-mesenchymal transition such as Twist1 and Snail1 have been implicated in invasiveness and the generation of cancer stem cells, but their persistent activity inhibits stem-cell-like properties and the outgrowth of disseminated cancer cells into macroscopic metastases. Here, we show that Twist1 activation primes a subset of mammary epithelial cells for stem-cell-like properties, which only emerge and stably persist following Twist1 deactivation. Consequently, when cells undergo a mesenchymal-epithelial transition (MET), they do not return to their original epithelial cell state, evidenced by acquisition of invasive growth behavior and a distinct gene expression profile. These data provide an explanation for how transient Twist1 activation may promote all steps of the metastatic cascade; i.e., invasion, dissemination, and metastatic outgrowth at distant sites.


Assuntos
Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição da Família Snail , Células-Tronco/citologia , Células-Tronco/metabolismo , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...