Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21862, 2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529751

RESUMO

The complex thermal history imposed by the laser-based powder bed fusion of metals (PBF-LB/M) process is known to promote the evolution of unique microstructures. In the present study, metastable CrMnNi steels with different nickel contents and, thus, different phase stabilities are manufactured by PBF-LB/M. Results clearly reveal that an adequate choice of materials will allow to tailor mechanical properties as well as residual stress states in the as-built material to eventually redundantize any thermal post-treatment. The chemical differences lead to different phase constitutions in as-built conditions and, thus, affect microstructure evolution and elementary deformation mechanisms upon deformation, i.e., twinning and martensitic transformation. Such alloys designed for additive manufacturing (AM) highlight the possibility to tackle well-known challenges in AM such as limited damage tolerance, porosity and detrimental residual stress states without conducting any post treatments, e.g., stress relieve and hot isostatic pressing. From the perspective of robust design of AM components, indeed it seems to be a very effective approach to adapt the material to the process characteristics of AM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...