Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 72(6): 1203-1213, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37314519

RESUMO

BACKGROUND: Following central nervous system (CNS) injury, the investigation for neuroinflammation is vital because of its pleiotropic role in both acute injury and long-term recovery. Agmatine (Agm) is well known for its neuroprotective effects and anti-neuroinflammatory properties. However, Agm's mechanism for neuroprotection is still unclear. We screened target proteins that bind to Agm using a protein microarray; the results showed that Agm strongly binds to interferon regulatory factor 2 binding protein (IRF2BP2), which partakes in the inflammatory response. Based on these prior data, we attempted to elucidate the mechanism by which the combination of Agm and IRF2BP2 induces a neuroprotective phenotype of microglia. METHODS: To confirm the relationship between Agm and IRF2BP2 in neuroinflammation, we used microglia cell-line (BV2) and treated with lipopolysaccharide from Escherichia coli 0111:B4 (LPS; 20 ng/mL, 24 h) and interleukin (IL)-4 (20 ng/mL, 24 h). Although Agm bound to IRF2BP2, it failed to enhance IRF2BP2 expression in BV2. Therefore, we shifted our focus onto interferon regulatory factor 2 (IRF2), which is a transcription factor and interacts with IRF2BP2. RESULTS: IRF2 was highly expressed in BV2 after LPS treatment but not after IL-4 treatment. When Agm bound to IRF2BP2 following Agm treatment, the free IRF2 translocated to the nucleus of BV2. The translocated IRF2 activated the transcription of Kruppel-like factor 4 (KLF4), causing KLF4 to be induced in BV2. The expression of KLF4 increased the CD206-positive cells in BV2. CONCLUSIONS: Taken together, unbound IRF2, resulting from the competitive binding of Agm to IRF2BP2, may provide neuroprotection against neuroinflammation via an anti-inflammatory mechanism of microglia involving the expression of KLF4.


Assuntos
Agmatina , Humanos , Agmatina/farmacologia , Agmatina/metabolismo , Fator 4 Semelhante a Kruppel , Proteínas de Transporte/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Fator Regulador 2 de Interferon/metabolismo , Fator Regulador 2 de Interferon/farmacologia , Fenótipo , Inflamação/metabolismo , Proteínas de Ligação a DNA , Fatores de Transcrição/metabolismo
2.
Front Neurosci ; 15: 708547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489627

RESUMO

Alzheimer's disease (AD) is characterized by memory loss and cognitive decline. Additionally, abnormal extracellular amyloid plaques accumulation and nerve damage caused by intracellular neurofibrillary tangles, and tau protein are characteristic of AD. Furthermore, AD is associated with oxidative stress, impaired mitochondrial structure and function, denormalization, and inflammatory responses. Recently, besides the amyloid ß hypothesis, another hypothesis linking AD to systemic diseases has been put forth by multiple studies as a probable cause for AD. Particularly, type 2 diabetes mellitus (T2DM) and its features, including hyperinsulinemia, and chronic hyperglycemia with an inflammatory response, have been shown to be closely related to AD through insulin resistance. The brain cannot synthesize or store glucose, but it does require glucose, and the use of glucose in the brain is higher than that in any other organ in the mammalian body. One of the therapeutic drugs for T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitor, suppresses the degradation of incretins, glucagon-like peptides and glucose-dependent insulinotropic peptide. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, recently used in T2DM treatment, have a unique mechanism of action via inhibition of renal glucose reabsorption, and which is different from the mechanisms of previously used medications. This manuscript reviews the pathophysiological relationship between the two diseases, AD and T2DM, and the pharmacological effects of therapeutic T2DM drugs, especially DPP-4 inhibitors, and SGLT2 inhibitors.

3.
Anat Cell Biol ; 54(2): 143-151, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34162764

RESUMO

Agmatine, the primary decarboxylation product of L-arginine, generated from arginine decarboxylase. Since the discovery of agmatine in the mammalian brain in the 1990s, an increasing number of agmatine-mediated effects have been discovered, demonstrating the benefits of agmatine on ischemic strokes, traumatic brain injury and numerous psychological disorders such as depression, anxiety, and stress. Agmatine also has cellular protective effects and contributes to cell proliferation and differentiation in the central nervous system (CNS). Neural progenitor cells are an important component in the recovery and repair of many neurological disorders due to their ability to differentiate into functional adult neurons. Recent data has revealed that agmatine can regulate and increase proliferation and the fate of progenitor cells in the adult hippocampus. This review aims to summarise and discuss the role of agmatine in the CNS; specifically, the effects and relationship between agmatine and neural progenitor cells and how these ideas can be applied to potential therapeutic application.

4.
Neurochem Res ; 46(8): 1933-1940, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33914233

RESUMO

Agmatine, an endogenous derivative of arginine, has been found to be effective in treating idiopathic pain, convulsion, stress-mediated behavior, and attenuate the withdrawal symptoms of drugs like morphine. In the early stages of ischemic brain injury in animals, exogenous agmatine treatment was found to be neuroprotective. Agmatine is also considered as a putative neurotransmitter and is still an experimental drug. Chemically, agmatine is called agmatine 1-(4-aminobutyl guanidine). Crystallographic study data show that positively-charged guanidine can bind to the protein containing Gly and Asp residues, and the amino group can interact with the complimentary sites of Glu and Ser. In this study, we blocked the amino end of the agmatine by conjugating it with FITC, but the guanidine end was unchanged. We compared the neuroprotective function of the agmatine and agmatine-FITC by treating them in neurons after excitotoxic stimulation. We found that even the amino end blocked neuronal viability in the excitotoxic condition, by NMDA treatment for 1 h, was increased by agmatine-FITC, which was similar to that of agmatine. We also found that the agmatine-FITC treatment reduced the expression of nitric oxide production in NMDA-treated cells. This study suggests that even if the amino end of agmatine is blocked, it can perform its neuroprotective function.


Assuntos
Agmatina/farmacologia , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Agmatina/química , Animais , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Feto/citologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacologia , Camundongos Endogâmicos ICR , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
5.
Cells ; 9(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887360

RESUMO

The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury. Through the use of mutant animal models, gene transfer, or heat stress, a number of studies have now reported positive outcomes of HSP70 induction. However, these approaches are not practical for clinical translation. Thus, pharmaceutical compounds that can induce HSP70, mostly by inhibiting HSP90, have been investigated as potential therapies to mitigate neurological disease and lead to neuroprotection. This review summarizes the neuroprotective mechanisms of HSP70 and discusses potential ways in which this endogenous therapeutic molecule could be practically induced by pharmacological means to ultimately improve neurological outcomes in acute neurological disease.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Benzoquinonas/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/agonistas , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Piridinas/farmacologia
6.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899357

RESUMO

Animal and human mechanistic studies have consistently shown an association between obesity and Alzheimer's disease (AD). AD, a degenerative brain disease, is the most common cause of dementia and is characterized by the presence of extracellular amyloid beta (Aß) plaques and intracellular neurofibrillary tangles disposition. Some studies have recently demonstrated that Aß and tau cannot fully explain the pathophysiological development of AD and that metabolic disease factors, such as insulin, adiponectin, and antioxidants, are important for the sporadic onset of nongenetic AD. Obesity prevention and treatment can be an efficacious and safe approach to AD prevention. Adiponectin is a benign adipokine that sensitizes the insulin receptor signaling pathway and suppresses inflammation. It has been shown to be inversely correlated with adipose tissue dysfunction and may enhance the risk of AD because a range of neuroprotection adiponectin mechanisms is related to AD pathology alleviation. In this study, we summarize the recent progress that addresses the beneficial effects and potential mechanisms of adiponectin in AD. Furthermore, we review recent studies on the diverse medications of adiponectin that could possibly be related to AD treatment, with a focus on their association with adiponectin. A better understanding of the neuroprotection roles of adiponectin will help clarify the precise underlying mechanism of AD development and progression.


Assuntos
Adiponectina/antagonistas & inibidores , Adiponectina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Fármacos Antiobesidade/uso terapêutico , Regulação da Expressão Gênica , Fármacos Neuroprotetores/uso terapêutico , Obesidade/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Obesidade/metabolismo , Obesidade/patologia
7.
IBRO Rep ; 7: 59-69, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31463415

RESUMO

Oxidative stress is a key player in both chronic and acute brain disease due to the higher metabolic demand of the brain. Among the producers of free radicals, NADPH-oxidase (NOX) is a major contributor to oxidative stress in neurological disorders. In the brain, the superoxide produced by NOX is mainly found in leukocytes. However, recent studies have reported that it can be found in several other cell types. NOX has been reported to regulate neuronal signaling, memory processing, and central cardiovascular homeostasis. However, overproduction of NOX can contribute to neurotoxicity, CNS degeneration, and cardiovascular disorders. Regarding the above functions, NOX has been shown to play a crucial role in chronic CNS diseases like Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), and in acute CNS disorders such as stroke, spinal cord injury, traumatic brain injury (TBI), and related cerebrovascular diseases. NOX is a multi-subunit complex consisting of two membrane-associated and four cytosolic subunits. Thus, in recent years, inhibition of NOX activity has drawn a great deal of attention from researchers in the field of treating chronic and acute CNS disorders and preventing secondary complications. Mounting evidence has shown that NOX inhibition is neuroprotective and that inhibiting NOX in circulating immune cells can improve neurological disease conditions. This review summarizes recent studies on the therapeutic effects and pharmacological strategies regarding NOX inhibitors in chronic and acute brain diseases and focuses on the hurdles that should be overcome before their clinical implementation.

8.
Neurochem Res ; 44(4): 735-750, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30610652

RESUMO

The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.


Assuntos
Agmatina/uso terapêutico , Canais Iônicos/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Agmatina/farmacologia , Animais , Humanos , Canais Iônicos/antagonistas & inibidores , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/metabolismo , Resultado do Tratamento
9.
Neuroreport ; 28(14): 929-935, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28817455

RESUMO

During spinal cord development, endogenous progenitors expressing nestin can migrate into the target and differentiate into neurons and other glial cells. Microglial cells can also be derived from nestin progenitor cells, even in the adult brain. Knockdown of Jak kinase 3 (Jak3) signaling can increase neurogenesis with longer neurite outgrowth in cortical progenitor cells. This study investigated the effect of Jak3 signaling on differentiation from nestin progenitor cells using E13.5 spinal progenitor cell cultures. In growth factors-enriched culture, developing neurons could not survive after several days and also a significant proportion of nestin-expressing cells transformed into ameboid Iba1 microglial cells, which increased exponentially after 5 days. This microgliogenesis was predominantly regulated by Jak3 signaling, which was confirmed by transcription factors responsible for microgliogenesis, and microglial migration and phagocytosis, such as Pu.1, Irf8, and Runx1. Jak3 inhibition also significantly increased the Tuj1 growing neurites with little microglial activation. These results indicated that neuronal and microglial cell differentiation was regulated primarily by Jak3 signaling and the developing neurons and neurite outgrowth might also be regulated by Jak3-dependent microglial activity.


Assuntos
Diferenciação Celular/fisiologia , Janus Quinase 3/metabolismo , Microglia/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/embriologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...