Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 505: 113268, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421364

RESUMO

Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the airways. The majority of patients with mild to moderate BA develop Th2-biased eosinophilic pulmonary inflammation and respond well to corticosteroid treatment. However up to 10% of BA patients develop severe pathology, which is associated with neutrophilic inflammation and resistant to conventional corticosteroid therapy. Contrary to eosinophil-predominant airway inflammation neutrophilic BA is developed through Th1- and Th17-immune responses. However, the etiology of corticoid insensitive neutrophilic BA is still remains unclear. Therefore, in the current study we developed a mouse model of BA with predominant neutrophilic rather than eosinophilic pulmonary inflammation. BALB/c mice were immunized with the mixture of the ovalbumin allergen and Freund's adjuvant, followed by aerosol challenge with the same allergen mixed with E. coli lipopolysaccharide. As a result, mice developed the main BA manifestations: production of allergen specific IgE, development of airway hyperreactivity, airway remodeling and pulmonary neutrophilic inflammation. Moreover, this pathology developed through Th1- and Th17-dependent mechanisms and mice with induced neutrophilic BA phenotype responded poorly to dexamethasone treatment, that coincide to clinical observations. The established mouse model could be useful both for studying the pathogenesis and for testing novel approaches to control neutrophilic BA.


Assuntos
Asma , Hiper-Reatividade Brônquica , Pneumonia , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Alérgenos , Animais , Hiper-Reatividade Brônquica/patologia , Modelos Animais de Doenças , Escherichia coli , Humanos , Inflamação , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Ovalbumina , Pneumonia/patologia , Esteroides/uso terapêutico
2.
Biochemistry (Mosc) ; 86(11): 1489-1501, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906042

RESUMO

Bronchial asthma is a heterogeneous chronic inflammatory disease of airways. The studies of molecular and cellular mechanisms of bronchial asthma have established that a wide range of immune (T and B cells, eosinophils, neutrophils, macrophages, etc.) and structural (epithelial and endothelial) cells are involved in its pathogenesis. These cells are activated in response to external stimuli (bacteria, viruses, allergens, and other pollutants) and produce pro-inflammatory factors (cytokines, chemokines, metalloproteinases, etc.), which ultimately leads to the initiation of pathological processes in the lungs. Genes encoding transcription factors of the STAT family (signal transducer and activator of transcription), that includes seven representatives, are involved in the cell activation. Recent studies have shown that the transcription factor STAT3 plays an important role in the activation of the abovementioned cells, thus contributing to the development of asthma. In animal studies, selective inhibition of STAT3 significantly reduces the severity of lung inflammation, which indicates its potential as a therapeutic target. In this review, we describe the mechanisms of STAT3 activation and its role in polarization of Th2/Th17 cells and M2 macrophages, as well as in the dysfunction of endothelial cells, which ultimately leads to development of bronchial asthma symptoms, such as infiltration of neutrophils and eosinophils into the lungs, bronchial hyperreactivity, and the respiratory tract remodeling.


Assuntos
Asma/imunologia , Leucócitos/imunologia , Pulmão/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Asma/patologia , Humanos , Leucócitos/patologia , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...