Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18037, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302929

RESUMO

Recently, drug-controlled release nanotechnology has gained special attention in biomedicine. This work focuses on developing novel electrospun polymeric nanofibers (NFs) for buccal delivery of VEN to avoid the hepatic metabolism and enzymatic degradation in the GIT and develop an effective control of drug release. The optimized NFs were obtained by blending polylactic acid (PLA), and poly (ɛ-caprolactone) (PCL) fixed at a ratio of 1:1. It was characterized for morphology, drug-loading, FTIR, XRD, DSC, and in vitro drug release. Ex vivo permeability of the blend NFs was assessed using chicken pouch mucosa compared to VEN suspension, followed by histopathological examination. Further, the cytotoxic effect in three different cell lines using WST-1 assay. SEM morphologies refer to defect-free uniform NFs of PLA, PCL, and PLA/PCL mats. These fibers had a diameter ranging from 200 to 500 nm. The physico-thermal characterization of NFs depicted that the drug was successfully loaded and in an amorphous state in the PLA/PCL NFs. In vitro release of NFs substantiated a bi-phasic profile with an initial burst release of about 30% in the initial 0.5 h and a prolonged cumulative release pattern that reached 80% over 96 h following a non-Fickian diffusion mechanism. Ex vivo permeation emphasizes the major enhancement of the sustained drug release and the noticeable decrease in the permeability of the drug from NFs. Cytotoxicity data found that IC50 of VEN alone was 217.55 µg/mL, then VEN-NFs recorded an IC50 value of 250.62 µg/mL, and plain NFs showed the lowest toxicity and IC50 440.48 µg/mL in oral epithelial cells (OEC). Histopathology and cell toxicity studies demonstrated the preserved mucosal architecture and the preclinical safety. The developed PLA/PCL NFs can be promising drug carriers to introduce a step-change in improved psychiatric treatment healthcare.


Assuntos
Nanofibras , Polímeros , Cloridrato de Venlafaxina , Preparações de Ação Retardada/farmacologia , Poliésteres
2.
Nanomaterials (Basel) ; 10(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245287

RESUMO

Herein, we present a new validated potentiometric method for fluoxetine (FLX) drug monitoring. The method is based on the integration of molecular imprinting polymer (MIP) beads as sensory elements with modified screen-printed solid contact ion-selective electrodes (ISEs). A multi-walled carbon nanotube (MWCNT) was used as a nanomaterial for the ion-to-electron transduction process. The prepared MIP beads depend on the use of acrylamide (AAm) and ethylene glycol dimethacrylic acid (EGDMA) as a functional monomer and cross-linker, respectively. The sensor revealed a stable response with a Nernstian slope of 58.9 ± 0.2 mV/decade and a detection limit of 2.1 × 10-6 mol/L in 10 mmol/L acetate buffer of pH 4.5. The presented miniaturized sensors revealed good selectivity towards FLX over many organic and inorganic cations, as well as some additives encountered in the pharmaceutical preparations. Repeatability, reproducibility and stability have been studied to evaluate the analytical features of the presented sensors. These sensors were successfully applied for FLX assessment in different pharmaceutical formulations collected from the Egyptian local market. The obtained results agreed well with the acceptable recovery percentage and were better than those obtained by other previously reported routine methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA