Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(24): 168320, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865287

RESUMO

Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Amiloidose de Cadeia Leve de Imunoglobulina , Anticorpos de Domínio Único , Animais , Humanos , Amiloide/imunologia , Caenorhabditis elegans , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/uso terapêutico , Miócitos Cardíacos/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/terapia
2.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232578

RESUMO

A clear relationship between the tau assemblies and toxicity has still to be established. To correlate the tau conformation with its proteotoxic effect in vivo, we developed an innovative cell-worm-based approach. HEK293 cells expressing tau P301L under a tetracycline-inducible system (HEK T-Rex) were employed to produce different tau assemblies whose proteotoxic potential was evaluated using C. elegans. Lysates from cells induced for five days significantly reduced the worm's locomotor activity. This toxic effect was not related to the total amount of tau produced by cells or to its phosphorylation state but was related to the formation of multimeric tau assemblies, particularly tetrameric ones. We investigated the applicability of this approach for testing compounds acting against oligomeric tau toxicity, using doxycycline (Doxy) as a prototype drug. Doxy affected tau solubility and promoted the disassembly of already formed toxic aggregates in lysates of cells induced for five days. These effects translated into a dose-dependent protective action in C. elegans. These findings confirm the validity of the combined HEK T-Rex cells and the C. elegans-based approach as a platform for pharmacological screening.


Assuntos
Tauopatias , Animais , Caenorhabditis elegans , Doxiciclina/farmacologia , Células HEK293 , Humanos , Proteínas tau
3.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055136

RESUMO

Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.


Assuntos
Cobre/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Calorimetria , Modelos Animais de Doenças , Histidina/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/toxicidade , Modelos Moleculares , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
4.
Nat Commun ; 12(1): 3532, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112780

RESUMO

In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL.


Assuntos
Caenorhabditis elegans/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/toxicidade , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Aprendizado de Máquina , Algoritmos , Sequência de Aminoácidos , Animais , Anticorpos/genética , Caenorhabditis elegans/genética , Bases de Dados Genéticas , Expressão Gênica , Humanos , Cadeias Leves de Imunoglobulina/química , Modelos Moleculares , Mutação , Proteínas Recombinantes
5.
Neurobiol Dis ; 153: 105330, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711491

RESUMO

Traumatic brain injury (TBI) is associated with widespread tau pathology in about 30% of patients surviving late after injury. We previously found that TBI in mice induces the formation of an abnormal form of tau (tauTBI) which progressively spreads from the site of injury to remote brain regions. Intracerebral inoculation of TBI brain homogenates into naïve mice induced progressive tau pathology, synaptic loss and late cognitive decline, suggesting a pivotal role of tauTBI in post-TBI neurodegeneration. However, the possibility that tauTBI was a marker of TBI-associated neurodegeneration rather than a toxic driver of functional decline could not be excluded. Here we employed the nematode C. elegans as a biosensor to test the pathogenic role of TBI generated tau. The motility of this nematode depends on efficient neuromuscular transmission and is exceptionally sensitive to the toxicity of amyloidogenic proteins, providing a tractable model for our tests. We found that worms exposed to brain homogenates from chronic but not acute TBI mice, or from mice in which tauTBI had been transmitted by intracerebral inoculation, had impaired motility and neuromuscular synaptic transmission. Results were similar when worms were given brain homogenates from transgenic mice overexpressing tau P301L, a tauopathy mouse model, suggesting that TBI-induced and mutant tau have similar toxic properties. P301L brain homogenate toxicity was similar in wild-type and ptl-1 knock-out worms, indicating that the nematode tau homolog protein PTL-1 was not required to mediate the toxic effect. Harsh protease digestion to eliminate the protein component of the homogenates, pre-incubation with anti-tau antibodies or tau depletion by immunoprecipitation, abolished the toxicity. Homogenates of chronic TBI brains from tau knock-out mice were not toxic to C. elegans, whereas oligomeric recombinant tau was sufficient to impair their motility. This study indicates that tauTBI impairs motor activity and synaptic transmission in C. elegans and supports a pathogenic role of tauTBI in the long-term consequences of TBI. It also sets the groundwork for the development of a C. elegans-based platform for screening anti-tau compounds.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Caenorhabditis elegans , Atividade Motora/fisiologia , Doenças Neurodegenerativas/metabolismo , Junção Neuromuscular/metabolismo , Proteínas tau/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Camundongos , Doenças Neurodegenerativas/fisiopatologia , Junção Neuromuscular/fisiopatologia , Tauopatias/metabolismo , Tauopatias/fisiopatologia
6.
Brain Sci ; 10(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187241

RESUMO

The understanding of the genetic, biochemical, and structural determinants underlying tau aggregation is pivotal in the elucidation of the pathogenic process driving tauopathies and the design of effective therapies. Relevant information on the molecular basis of human neurodegeneration in vivo can be obtained using the nematode Caenorhabditis elegans (C. elegans). To this end, two main approaches can be applied: the overexpression of genes/proteins leading to neuronal dysfunction and death, and studies in which proteins prone to misfolding are exogenously administered to induce a neurotoxic phenotype. Thanks to the easy generation of transgenic strains expressing human disease genes, C. elegans allows the identification of genes and/or proteins specifically associated with pathology and the specific disruptions of cellular processes involved in disease. Several transgenic strains expressing human wild-type or mutated tau have been developed and offer significant information concerning whether transgene expression regulates protein production and aggregation in soluble or insoluble form, onset of the disease, and the degenerative process. C. elegans is able to specifically react to the toxic assemblies of tau, thus developing a neurodegenerative phenotype that, even when exogenously administered, opens up the use of this assay to investigate in vivo the relationship between the tau sequence, its folding, and its proteotoxicity. These approaches can be employed to screen drugs and small molecules that can interact with the biogenesis and dynamics of formation of tau aggregates and to analyze their interactions with other cellular proteins.

7.
Cancers (Basel) ; 12(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081033

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen TNBC cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (HCC-1599, MB-157 and MDA-MB-157) endowed with ATRA-sensitivity are characterized by genetic aberrations of the NOTCH1-gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD. N1ICD renders HCC-1599, MB-157 and MDA-MB-157 cells sensitive not only to ATRA, but also to γ-secretase inhibitors (DAPT; PF-03084014). Combinations of ATRA and γ-secretase inhibitors produce additive/synergistic effects in vitro and in vivo. RNA-sequencing studies of HCC-1599 and MB-157 cells exposed to ATRA and DAPT and ATRA+DAPT demonstrate that the two compounds act on common gene sets, some of which belong to the NOTCH1 pathway. ATRA inhibits the growth of HCC-1599, MB-157 and MDA-MB-157 cells via RARα, which up-regulates several retinoid target-genes, including RARß. RARß is a key determinant of ATRA anti-proliferative activity, as its silencing suppresses the effects exerted by the retinoid. In conclusion, we demonstrate that ATRA exerts a significant anti-tumor action only in TNBC cells showing constitutive NOTCH1 activation. Our results support the design of clinical trials involving combinations between ATRA and γ-secretase inhibitors for the treatment of this TNBC subtype.

8.
Cancers (Basel) ; 12(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384653

RESUMO

All-trans retinoic acid (ATRA), a recognized differentiating agent, has significant potential in the personalized/stratified treatment of breast cancer. The present study reports on the molecular mechanisms underlying the anti-tumor activity of ATRA in breast cancer. The work is based on transcriptomic experiments performed on ATRA-treated breast cancer cell-lines, short-term tissue cultures of patient-derived mammary-tumors and a xenograft model. ATRA upregulates gene networks involved in interferon-responses, immune-modulation and antigen-presentation in retinoid-sensitive cells and tumors characterized by poor immunogenicity. ATRA-dependent upregulation of these gene networks is caused by a viral mimicry process, involving the activation of endogenous retroviruses. ATRA induces a non-canonical type of viral mimicry, which results in increased expression of the IRF1 (Interferon Responsive Factor 1) transcription factor and the DTX3L (Deltex-E3-Ubiquitin-Ligase-3L) downstream effector. Functional knockdown studies indicate that IRF1 and DTX3L are part of a negative feedback loop controlling ATRA-dependent growth inhibition of breast cancer cells. The study is of relevance from a clinical/therapeutic perspective. In fact, ATRA stimulates processes controlling the sensitivity to immuno-modulatory drugs, such as immune-checkpoint-inhibitors. This suggests that ATRA and immunotherapeutic agents represent rational combinations for the personalized treatment of breast cancer. Remarkably, ATRA-sensitivity seems to be relatively high in immune-cold mammary tumors, which are generally resistant to immunotherapy.

9.
Biochim Biophys Acta Mol Basis Dis ; 1865(3): 648-660, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625383

RESUMO

AGel amyloidosis, formerly known as familial amyloidosis of the Finnish-type, is caused by pathological aggregation of proteolytic fragments of plasma gelsolin. So far, four mutations in the gelsolin gene have been reported as responsible for the disease. Although D187N is the first identified variant and the best characterized, its structure has been hitherto elusive. Exploiting a recently-developed nanobody targeting gelsolin, we were able to stabilize the G2 domain of the D187N protein and obtained, for the first time, its high-resolution crystal structure. In the nanobody-stabilized conformation, the main effect of the D187N substitution is the impairment of the calcium binding capability, leading to a destabilization of the C-terminal tail of G2. However, molecular dynamics simulations show that in the absence of the nanobody, D187N-mutated G2 further misfolds, ultimately exposing its hydrophobic core and the furin cleavage site. The nanobody's protective effect is based on the enhancement of the thermodynamic stability of different G2 mutants (D187N, G167R and N184K). In particular, the nanobody reduces the flexibility of dynamic stretches, and most notably decreases the conformational entropy of the C-terminal tail, otherwise stabilized by the presence of the Ca2+ ion. A Caenorhabditis elegans-based assay was also applied to quantify the proteotoxic potential of the mutants and determine whether nanobody stabilization translates into a biologically relevant effect. Successful protection from G2 toxicity in vivo points to the use of C. elegans as a tool for investigating the mechanisms underlying AGel amyloidosis and rapidly screen new therapeutics.


Assuntos
Amiloide/toxicidade , Amiloidose/genética , Distrofias Hereditárias da Córnea/genética , Gelsolina/química , Gelsolina/genética , Gelsolina/metabolismo , Anticorpos de Domínio Único/metabolismo , Substituição de Aminoácidos/genética , Amiloide/genética , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose Familiar/genética , Amiloidose Familiar/metabolismo , Animais , Caenorhabditis elegans , Cálcio/química , Cálcio/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Cristalografia por Raios X , Finlândia , Furina/química , Furina/metabolismo , Gelsolina/toxicidade , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidade , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia
10.
Neurobiol Dis ; 117: 226-234, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29936232

RESUMO

Mutations in the microtubule-associated protein tau (MAPT) gene have been linked to a heterogeneous group of progressive neurodegenerative disorders commonly called tauopathies. From patients with frontotemporal lobar degeneration with distinct atypical clinical phenotypes, we recently identified two new mutations on the same codon, in position 363 of the MAPT gene, which resulted in the production of Val-to-Ala (tauV363A) or Val-to-Ile (tauV363I) mutated tau. These substitutions specifically affected microtubule polymerization and propensity of tau to aggregate in vitro suggesting that single amino acid modification may dictate the fate of the neuropathology. To clarify whether tauV363A and tauV363I affect protein misfolding differently in vivo driving certain phenotypes, we generated new transgenic C. elegans strains. Human 2N4R tau carrying the mutation was expressed in all the neurons of worms. The behavioral defects, misfolding and proteotoxicity caused by the tauV363A and tauV363I mutated proteins were compared to that induced by the expression of wild-type tau (tauwt). Pan-neuronal expression of human 2N4R tauWT in worms resulted in a neuromuscular defect with characteristics of a neurodegenerative phenotype. This defect was worsened by the expression of mutated proteins which drive distinct neuronal dysfunctions and synaptic impairments involving, in transgenic worms expressing tauV363A (V363A) also a pharyngeal defect never linked before to other mutations. The two mutations differently affected the tau phosphorylation and misfolding propensities: tauV363I was highly phosphorylated on epitopes corresponding to Thr231 and Ser202/Thr205, and accumulated as insoluble tau assemblies whereas tauV363A showed a greater propensity to form soluble oligomeric assemblies. These findings uphold the role of a single amino acid substitution in specifically affecting the ability of tau to form soluble and insoluble assemblies, opening up new perspectives in the pathogenic mechanism underlying tauopathies.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Degeneração Neural/metabolismo , Agregados Proteicos/fisiologia , Tauopatias/metabolismo , Proteínas tau/biossíntese , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Degeneração Neural/genética , Degeneração Neural/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
11.
Sci Rep ; 7(1): 11140, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894266

RESUMO

We generated 6 transgenic lines with insertion of an expression plasmid for the R883/M xanthine dehydrogenase (XDH) mutant protein. Approximately 20% of the animals deriving from one of the transgenic lines show ocular abnormalities and an increase in intra-ocular pressure which are consistent with glaucoma. The observed pathologic phenotype is not due to expression of the transgene, but rather the consequence of the transgene insertion site, which has been defined by genome sequencing. The insertion site maps to chromosome 1qA3 in close proximity to the loci encoding AP-2ß and AP-2δ, two proteins expressed in the eye. The insertion leads to a reduction in AP-2ß and AP-2δ levels. Down-regulation of AP-2ß expression is likely to be responsible for the pathologic phenotype, as conditional deletion of the Tfap2b gene in the neural crest has recently been shown to cause defective development of the eye anterior segment and early-onset glaucoma. In these conditional knock-out and our transgenic mice, the morphological/histological features of the glaucomatous pathology are surprisingly similar. Our transgenic mouse represents a model of angle-closure glaucoma and a useful tool for the study of the pathogenesis and the development of innovative therapeutic strategies.


Assuntos
Suscetibilidade a Doenças , Expressão Gênica , Glaucoma/genética , Fator de Transcrição AP-2/genética , Animais , Cromossomos , Modelos Animais de Doenças , Dosagem de Genes , Ordem dos Genes , Vetores Genéticos , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutagênese Insercional , Fenótipo , Fator de Transcrição AP-2/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
12.
Sci Rep ; 6: 30343, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456060

RESUMO

Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.


Assuntos
Aldeído Oxirredutases/metabolismo , Distribuição da Gordura Corporal , Ritmo Circadiano , Flavoproteínas/metabolismo , Locomoção , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Aldeído Oxirredutases/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Flavoproteínas/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Transcriptoma
13.
J Biol Chem ; 290(29): 17690-17709, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26018078

RESUMO

All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-ß1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-ß1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFß contributes to the anti-migratory effect of ATRA. The retinoid switches TGFß from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Receptor Notch1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tretinoína/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo
14.
EMBO Mol Med ; 7(7): 950-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25888236

RESUMO

Forty-two cell lines recapitulating mammary carcinoma heterogeneity were profiled for all-trans retinoic acid (ATRA) sensitivity. Luminal and ER(+) (estrogen-receptor-positive) cell lines are generally sensitive to ATRA, while refractoriness/low sensitivity is associated with a Basal phenotype and HER2 positivity. Indeed, only 2 Basal cell lines (MDA-MB157 and HCC-1599) are highly sensitive to the retinoid. Sensitivity of HCC-1599 cells is confirmed in xenotransplanted mice. Short-term tissue-slice cultures of surgical samples validate the cell-line results and support the concept that a high proportion of Luminal/ER(+) carcinomas are ATRA sensitive, while triple-negative (Basal) and HER2-positive tumors tend to be retinoid resistant. Pathway-oriented analysis of the constitutive gene-expression profiles in the cell lines identifies RARα as the member of the retinoid pathway directly associated with a Luminal phenotype, estrogen positivity and ATRA sensitivity. RARα3 is the major transcript in ATRA-sensitive cells and tumors. Studies in selected cell lines with agonists/antagonists confirm that RARα is the principal mediator of ATRA responsiveness. RARα over-expression sensitizes retinoid-resistant MDA-MB453 cells to ATRA anti-proliferative action. Conversely, silencing of RARα in retinoid-sensitive SKBR3 cells abrogates ATRA responsiveness. All this is paralleled by similar effects on ATRA-dependent inhibition of cell motility, indicating that RARα may mediate also ATRA anti-metastatic effects. We define gene sets of predictive potential which are associated with ATRA sensitivity in breast cancer cell lines and validate them in short-term tissue cultures of Luminal/ER(+) and triple-negative tumors. In these last models, we determine the perturbations in the transcriptomic profiles afforded by ATRA. The study provides fundamental information for the development of retinoid-based therapeutic strategies aimed at the stratified treatment of breast cancer subtypes.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Receptores do Ácido Retinoico/biossíntese , Tretinoína/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Receptor alfa de Ácido Retinoico , Transplante Heterólogo , Tretinoína/uso terapêutico
15.
Cell Mol Life Sci ; 70(10): 1807-30, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23263164

RESUMO

Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXß and successive pseudogenization of AOXα. AOXß is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXß and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.


Assuntos
Aldeído Oxidase/metabolismo , Evolução Molecular , Aldeído Oxidase/classificação , Aldeído Oxidase/genética , Sequência de Aminoácidos , Animais , Duplicação Gênica , Regulação da Expressão Gênica , Genoma , Humanos , Invertebrados/genética , Invertebrados/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudogenes/genética , Alinhamento de Sequência , Vertebrados/genética , Vertebrados/metabolismo , Xantina Desidrogenase/classificação , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
16.
J Biol Chem ; 287(31): 25782-94, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22669976

RESUMO

Spinal muscular atrophy is a fatal genetic disease of motoneurons due to loss of full-length survival of motor neuron protein, the main product of the disease gene SMN1. Axonal SMN (a-SMN) is an alternatively spliced isoform of SMN1, generated by retention of intron 3. To study a-SMN function, we generated cellular clones for the expression of the protein in mouse motoneuron-like NSC34 cells. The model was instrumental in providing evidence that a-SMN decreases cell growth and plays an important role in the processes of axon growth and cellular motility. In our conditions, low levels of a-SMN expression were sufficient to trigger the observed biological effects, which were not modified by further increasing the amounts of the expressed protein. Differential transcriptome analysis led to the identification of novel a-SMN-regulated factors, i.e. the transcripts coding for the two chemokines, C-C motif ligands 2 and 7 (CCL2 and CCL7), as well as the neuronal and myotrophic factor, insulin-like growth factor-1 (IGF1). a-SMN-dependent induction of CCL2 and IGF1 mRNAs resulted in increased intracellular levels and secretion of the respective protein products. Induction of CCL2 contributes to the a-SMN effects, mediating part of the action on axon growth and random cell motility, as indicated by chemokine knockdown and re-addition studies. Our results shed new light on a-SMN function and the underlying molecular mechanisms. The data provide a rational framework to understand the role of a-SMN deficiency in the etiopathogenesis of spinal muscular atrophy.


Assuntos
Axônios/fisiologia , Movimento Celular , Quimiocina CCL2/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/fisiologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Axônios/metabolismo , Linhagem Celular , Proliferação de Células , Forma Celular , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/genética , Neurônios/metabolismo , Transporte Proteico , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/fisiologia , Transcrição Gênica , Transcriptoma
17.
Mol Cell Biol ; 29(2): 357-77, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18981221

RESUMO

The mouse aldehyde oxidase AOH2 (aldehyde oxidase homolog 2) is a molybdoflavoenzyme. Harderian glands are the richest source of AOH2, although the protein is detectable also in sebaceous glands, epidermis, and other keratinized epithelia. The levels of AOH2 in the Harderian gland and skin are controlled by genetic background, being maximal in CD1 and C57BL/6 and minimal in DBA/2, CBA, and 129/Sv strains. Testosterone is a negative regulator of AOH2 in Harderian glands. Purified AOH2 oxidizes retinaldehyde into retinoic acid, while it is devoid of pyridoxal-oxidizing activity. Aoh2(-/-) mice, the first aldehyde oxidase knockout animals ever generated, are viable and fertile. The data obtained for this knockout model indicate a significant role of AOH2 in the local synthesis and biodisposition of endogenous retinoids in the Harderian gland and skin. The Harderian gland's transcriptome of knockout mice demonstrates overall downregulation of direct retinoid-dependent genes as well as perturbations in pathways controlling lipid homeostasis and cellular secretion, particularly in sexually immature animals. The skin of knockout mice is characterized by thickening of the epidermis in basal conditions and after UV light exposure. This has correlates in the corresponding transcriptome, which shows enrichment and overall upregulation of genes involved in hypertrophic responses.


Assuntos
Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Epiderme/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Glândula de Harder/metabolismo , Tretinoína/metabolismo , Envelhecimento , Aldeído Oxirredutases/isolamento & purificação , Animais , Endocitose/genética , Epiderme/anatomia & histologia , Epiderme/química , Epiderme/patologia , Exocitose/genética , Feminino , Flavoproteínas/isolamento & purificação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glândula de Harder/anatomia & histologia , Glândula de Harder/química , Hipertrofia/metabolismo , Lipídeos/genética , Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Retinaldeído/metabolismo , Glândulas Sebáceas/metabolismo , Caracteres Sexuais , Testosterona/metabolismo
18.
Mol Pharmacol ; 70(3): 909-24, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16788091

RESUMO

The retinoid-related molecules (RRMs) ST1926 [(E)-3-(4'-hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid] and CD437 (6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid) are promising anticancer agents. We compared the retinoic acid receptor (RAR) trans-activating properties of the two RRMs and all-trans-retinoic acid (ATRA). ST1926 and CD437 are better RARgamma agonists than ATRA. We used three teratocarcinoma cell lines to evaluate the significance of RARgamma in the activity of RRMs: F9-wild type (WT); F9gamma-/-, lacking the RARgamma gene; F9gamma51, aF9gamma-/-derivative, complemented for the RARgamma deficit. Similar to ATRA, ST1926 and CD437 activate cytodifferentiation only in F9-WT cells. Unlike ATRA, ST1926 and CD437 arrest cells in the G2/M phase of the cell cycle and induce apoptosis in all F9 cell lines. Our data indicate that RARgamma and the classic retinoid pathway are not relevant for the antiproliferative and apoptotic activities of RRMs in vitro. Increases in cytosolic calcium are fundamental for apoptosis, in that intracellular calcium chelators abrogate the process. Comparison of the gene expression profiles associated with ST1926 and ATRA in F9-WT and F9gamma-/-indicates that the RRM activates a conspicuous nonretinoid response in addition to the classic and RAR-dependent pathway. The pattern of genes regulated by ST1926 selectively, in a RARgamma-independent manner, provides novel insights into the possible molecular determinants underlying the activity of RRMs in vitro. Furthermore, it suggests that RARgamma-dependent responses are relevant to the activity of RRMs in vivo. Indeed, the receptor hinders the antitumor activity in vivo, in that both syngeneic and immunosuppressed SCID mice bearing F9gamma-/- tumors have increased life spans after treatment with ST1926 and CD437 relative to their F9-WT counterparts.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/farmacologia , Cinamatos/farmacologia , Receptores do Ácido Retinoico/metabolismo , Retinoides/farmacologia , Teratocarcinoma/patologia , Tretinoína/metabolismo , Adamantano/farmacologia , Animais , Células COS , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Citosol/efeitos dos fármacos , Modelos Animais de Doenças , Fase G2/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Mitose/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tretinoína/farmacologia , Receptor gama de Ácido Retinoico
19.
J Biol Chem ; 281(28): 19748-61, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16672219

RESUMO

Aldehyde oxidases are molybdo-flavoenzymes structurally related to xanthine oxidoreductase. They catalyze the oxidation of aldehydes or N-heterocycles of physiological, pharmacological, and toxicological relevance. Rodents are characterized by four aldehyde oxidases as follows: AOX1 and aldehyde oxidase homologs 1-3 (AOH1, AOH2, and AOH3). Humans synthesize a single functional aldehyde oxidase, AOX1. Here we define the structure and the characteristics of the aldehyde oxidase genes and proteins in chicken and dog. The avian genome contains two aldehyde oxidase genes, AOX1 and AOH, mapping to chromosome 7. AOX1 and AOH are structurally very similar and code for proteins whose sequence was deduced from the corresponding cDNAs. AOX1 is the ortholog of the same gene in mammals, whereas AOH represents the likely ancestor of rodent AOH1, AOH2, and AOH3. The dog genome is endowed with two structurally conserved and active aldehyde oxidases clustering on chromosome 37. Cloning of the corresponding cDNAs and tissue distribution studies demonstrate that they are the orthologs of rodent AOH2 and AOH3. The vestiges of dog AOX1 and AOH1 are recognizable upstream of AOH2 and AOH3 on the same chromosome. Comparison of the complement and the structure of the aldehyde oxidase and xanthine oxidoreductase genes in vertebrates and other animal species indicates that they evolved through a series of duplication and inactivation events. Purification of the chicken AOX1 protein to homogeneity from kidney demonstrates that the enzyme possesses retinaldehyde oxidase activity. Unlike humans and most other mammals, dog and chicken are devoid of liver aldehyde oxidase activity.


Assuntos
Aldeído Oxidase/fisiologia , Xantina Oxidase/metabolismo , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Animais , Galinhas , Cães , Evolução Molecular , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie , Distribuição Tecidual , Xantina Oxidase/genética
20.
J Biol Chem ; 279(48): 50482-98, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15383531

RESUMO

Mammalian molybdo-flavoenzymes are oxidases requiring FAD and molybdopterin (molybdenum cofactor) for their catalytic activity. This family of proteins was thought to consist of four members, xanthine oxidoreductase, aldehyde oxidase 1 (AOX1), and the aldehyde oxidase homologues 1 and 2 (AOH1 and AOH2, respectively). Whereas the first two enzymes are present in humans and various other mammalian species, the last two proteins have been described only in mice. Here, we report on the identification, in both mice and rats, of a novel molybdo-flavoenzyme, AOH3. In addition, we have cloned the cDNAs coding for rat AOH1 and AOH2, demonstrating that this animal species has the same complement of molybdo-flavoproteins as the mouse. The AOH3 cDNA is characterized by remarkable similarity to AOX1, AOH1, AOH2, and xanthine oxidoreductase cDNAs. Mouse AOH3 is selectively expressed in Bowman's glands of the olfactory mucosa, although small amounts of the corresponding mRNA are present also in the skin. In the former location, two alternatively spliced forms of the AOH3 transcript with different 3'-untranslated regions were identified. The general properties of AOH3 were determined by purification of mouse AOH3 from the olfactory mucosa. The enzyme possesses aldehyde oxidase activity and oxidizes, albeit with low efficiency, exogenous substrates that are recognized by AOH1 and AOX1. The Aoh3 gene maps to mouse chromosome 1 band c1 and rat chromosome 7 in close proximity to the Aox1, Aoh1, and Aoh2 loci and has an exon/intron structure almost identical to that of the other molybdo-flavoenzyme genes in the two species.


Assuntos
Aldeído Oxidase/genética , Família Multigênica , Aldeído Oxidase/isolamento & purificação , Aldeído Oxidase/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Flavoproteínas/genética , Flavoproteínas/metabolismo , Camundongos , Dados de Sequência Molecular , Mucosa Olfatória/metabolismo , Ratos , Alinhamento de Sequência , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...