Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12566, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532878

RESUMO

Collective migration of cells is a fundamental behavior in biology. For the quantitative understanding of collective cell migration, live-cell imaging techniques have been used using e.g., phase contrast or fluorescence images. Particle tracking velocimetry (PTV) is a common recipe to quantify cell motility with those image data. However, the precise tracking of cells is not always feasible. Particle image velocimetry (PIV) is an alternative to PTV, corresponding to Eulerian picture of fluid dynamics, which derives the average velocity vector of an aggregate of cells. However, the accuracy of PIV in capturing the underlying cell motility and what values of the parameters should be chosen is not necessarily well characterized, especially for cells that do not adhere to a viscous flow. Here, we investigate the accuracy of PIV by generating images of simulated cells by the Vicsek model using trajectory data of agents at different noise levels. It was found, using an alignment score, that the direction of the PIV vectors coincides with the direction of nearby agents with appropriate choices of PIV parameters. PIV is found to accurately measure the underlying motion of individual agents for a wide range of noise level, and its condition is addressed.


Assuntos
Hidrodinâmica , Reologia/métodos , Movimento Celular , Velocidade do Fluxo Sanguíneo
2.
Sci Adv ; 8(6): eabj1720, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138896

RESUMO

Pairwise interactions are fundamental drivers of collective behavior-responsible for group cohesion. The abiding question is how each individual influences the collective. However, time-delayed mutual information and transfer entropy, commonly used to quantify mutual influence in aggregated individuals, can result in misleading interpretations. Here, we show that these information measures have substantial pitfalls in measuring information flow between agents from their trajectories. We decompose the information measures into three distinct modes of information flow to expose the role of individual and group memory in collective behavior. It is found that decomposed information modes between a single pair of agents reveal the nature of mutual influence involving many-body nonadditive interactions without conditioning on additional agents. The pairwise decomposed modes of information flow facilitate an improved diagnosis of mutual influence in collectives.

3.
Biophys Physicobiol ; 18: 131-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178564

RESUMO

Synchronized movement of (both unicellular and multicellular) systems can be observed almost everywhere. Understanding of how organisms are regulated to synchronized behavior is one of the challenging issues in the field of collective motion. It is hypothesized that one or a few agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). The identification of the leader (influential) agent(s) is very crucial. This article reviews different mathematical models that represent different types of leadership. We focus on the improvement of the leader-follower classification problem. It was found using a simulation model that the use of interaction domain information significantly improves the leader-follower classification ability using both linear schemes and information-theoretic schemes for quantifying influence. This article also reviews different schemes that can be used to identify the interaction domain using the motion data of agents.

4.
J Chem Phys ; 154(3): 034901, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33499629

RESUMO

Transfer entropy in information theory was recently demonstrated [Basak et al., Phys. Rev. E 102, 012404 (2020)] to enable us to elucidate the interaction domain among interacting elements solely from an ensemble of trajectories. Therefore, only pairs of elements whose distances are shorter than some distance variable, termed cutoff distance, are taken into account in the computation of transfer entropies. The prediction performance in capturing the underlying interaction domain is subject to the noise level exerted on the elements and the sufficiency of statistics of the interaction events. In this paper, the dependence of the prediction performance is scrutinized systematically on noise level and the length of trajectories by using a modified Vicsek model. The larger the noise level and the shorter the time length of trajectories, the more the derivative of average transfer entropy fluctuates, which makes the identification of the interaction domain in terms of the position of global minimum of the derivative of average transfer entropy difficult. A measure to quantify the degree of strong convexity at the coarse-grained level is proposed. It is shown that the convexity score scheme can identify the interaction distance fairly well even while the position of the global minimum of the derivative of average transfer entropy does not. We also derive an analytical model to explain the relationship between the interaction domain and the change in transfer entropy that supports our cutoff distance technique to elucidate the underlying interaction domain from trajectories.

5.
Phys Rev E ; 102(1-1): 012404, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795064

RESUMO

An information-theoretic scheme is proposed to estimate the underlying domain of interactions and the timescale of the interactions for many-particle systems. The crux is the application of transfer entropy which measures the amount of information transferred from one variable to another, and the introduction of a "cutoff distance variable" which specifies the distance within which pairs of particles are taken into account in the estimation of transfer entropy. The Vicsek model often studied as a metaphor of collectively moving animals is employed with introducing asymmetric interactions and an interaction timescale. Based on ensemble data of trajectories of the model system, it is shown that using the interaction domain significantly improves the performance of classification of leaders and followers compared to the approach without utilizing knowledge of the domain. Given an interaction timescale estimated from an ensemble of trajectories, the first derivative of transfer entropy averaged over the ensemble with respect to the cutoff distance is presented to serve as an indicator to infer the interaction domain. It is shown that transfer entropy is superior for inferring the interaction radius compared to cross correlation, hence resulting in a higher performance for inferring the leader-follower relationship. The effects of noise size exerted from environment and the ratio of the numbers of leader and follower on the classification performance are also discussed.

6.
Phys Rev E ; 102(6-2): 069902, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466116

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.102.012404.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...