Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Netw Neurosci ; 7(1): 73-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334007

RESUMO

The functional organization of the brain is usually presented with a back-to-front gradient of timescales, reflecting regional specialization with sensory areas (back) processing information faster than associative areas (front), which perform information integration. However, cognitive processes require not only local information processing but also coordinated activity across regions. Using magnetoencephalography recordings, we find that the functional connectivity at the edge level (between two regions) is also characterized by a back-to-front gradient of timescales following that of the regional gradient. Unexpectedly, we demonstrate a reverse front-to-back gradient when nonlocal interactions are prominent. Thus, the timescales are dynamic and can switch between back-to-front and front-to-back patterns.

2.
J Neurosci ; 42(47): 8807-8816, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36241383

RESUMO

Two structurally connected brain regions are more likely to interact, with the lengths of the structural bundles, their widths, myelination, and the topology of the structural connectome influencing the timing of the interactions. We introduce an in vivo approach for measuring functional delays across the whole brain in humans (of either sex) using magneto/electroencephalography (MEG/EEG) and integrating them with the structural bundles. The resulting topochronic map of the functional delays/velocities shows that larger bundles have faster velocities. We estimated the topochronic map in multiple sclerosis patients, who have damaged myelin sheaths, and controls, demonstrating greater delays in patients across the network and that structurally lesioned tracts were slowed down more than unaffected ones. We provide a novel framework for estimating functional transmission delays in vivo at the single-subject and single-tract level.SIGNIFICANCE STATEMENT This article provides a straightforward way to estimate patient-specific delays and conduction velocities in the CNS, at the individual level, in healthy and diseased subjects. To do so, it uses a principled way to merge magnetoencephalography (MEG)/electroencephalography (EEG) and tractography.


Assuntos
Conectoma , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Eletroencefalografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...