Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Cell Biochem Funct ; 42(5): e4098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034646

RESUMO

Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Imunoterapia , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Microbioma Gastrointestinal/imunologia , Microambiente Tumoral/imunologia , Animais
2.
Cell J ; 26(5): 293-308, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39066594

RESUMO

OBJECTIVE: Despite the advances in treatment, breast cancer (BC) remains a major cause of death in women. This study aims to evaluate the prognostic significance of detecting circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in paired peripheral blood (PB) and bone marrow (BM) samples obtained both before and after adjuvant chemotherapy from patients with operable BC. MATERIALS AND METHODS: In this experimental study, from 160 patients with primary BC, we collected 160 PB and BM samples before and we could be able to collect PB and BM samples from 100 of them after adjuvant chemotherapy. The expression level of cytokeratin 19 (CK19), carcinoembryonic antigen (CEA), mammaglobin 1 (MGB1), mucin 2 (MUC2) and trefoil factor 1 (TFF1) mRNAs in the PB/BM samples were analyzed by quantitative real-time polymerase chain reaction (PCR). RESULTS: Multivariate Cox regression analyses indicated that the detection of CK19 mRNA-positive CTCs/DTCs either before or after adjuvant chemotherapy was an independent factor for prognosis associated with decreased diseasefree survival (DFS). Patients with tumor cells detected in both PB and BM and patients with persistent detection of tumor cells before and after chemotherapy had worse outcomes compared to those with tumor cells detected in one or neither of the compartments. CONCLUSION: This study suggests that the detection of CK19 mRNA-positive CTCs/DTCs either before or after adjuvant chemotherapy could be an independent predictor of DFS in operable BC patients.

3.
Heliyon ; 10(11): e32366, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933971

RESUMO

Aberrant epigenetic modifications, particularly DNA methylation, play a critical role in the pathogenesis and progression of human diseases. The current review aims to reveal the role of aberrant DNA methylation in the pathogenesis and progression of diseases and to discuss the original data obtained from international research laboratories on this topic. In the review, we mainly summarize the studies exploring the role of aberrant DNA methylation as diagnostic and prognostic biomarkers in a broad range of human diseases, including monogenic epigenetics, autoimmunity, metabolic disorders, hematologic neoplasms, and solid tumors. The last section provides a general overview of the possibility of the DNA methylation machinery from the perspective of pharmaceutic approaches. In conclusion, the study of DNA methylation machinery is a phenomenal intersection that each of its ways can reveal the mysteries of various diseases, introduce new diagnostic and prognostic biomarkers, and propose a new patient-tailored therapeutic approach for diseases.

4.
Asian Pac J Cancer Prev ; 25(6): 1959-1967, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918657

RESUMO

BACKGROUND: As one of the main molecules in BCR-ABL signaling, c-Myc acts as a pivotal key in disease progression and disruption of long-term remission in patients with CML. OBJECTIVES: To clarify the effects of c-Myc inhibition in CML, we examined the anti-tumor property of a well-known small molecule inhibitor of c-Myc 10058-F4 on K562 cell line. METHODS: This experimental study was conducted in K562 cell line for evaluation of cytotoxic activity of 10058-F4 using Trypan blue and MTT assays. Flow cytometry and Quantitative RT-PCR analysis were also conducted to determine its mechanism of action. Additionally, Annexin/PI staining was performed for apoptosis assessment. RESULTS: The results of Trypan blue and MTT assay demonstrated that inhibition of c-Myc, as shown by suppression of c-Myc expression and its associated genes PP2A, CIP2A, and hTERT, could decrease viability and metabolic activity of K562 cells, respectively. Moreover, a robust elevation in cell population in G1-phase coupled with up-regulation of p21 and p27 expression shows that 10058-F4 could hamper cell proliferation, at least partly, through induction of G1 arrest. Accordingly, we found that 10058-F4 induced apoptosis via increasing Bax and Bad; In contrast, no significant alterations were observed NF-KB pathway-targeted anti-apoptotic genes in the mRNA levels. Notably, disruption of the NF-κB pathway with bortezomib as a common proteasome inhibitor sensitized K562 cells to the cytotoxic effect of 10058-F4, substantiating the fact that the NF-κB axis functions probably attenuate the K562 cells sensitivity to c-Myc inhibition. CONCLUSIONS: It can be concluded from the results of this study that inhibition of c-Myc induces anti-neoplastic effects on CML-derived K562 cells as well as increases the efficacy of imatinib. For further insight into the safety and effectiveness of 10058-F4 in CML, in vivo studies will be required.


Assuntos
Apoptose , Proliferação de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Proto-Oncogênicas c-myc , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células K562 , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Células Tumorais Cultivadas , Ácidos Borônicos/farmacologia , RNA Mensageiro/genética , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Telomerase/antagonistas & inibidores
5.
Iran J Basic Med Sci ; 27(7): 801-812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800032

RESUMO

Objectives: Until recently, a conventional chemotherapy regimen for Acute lymphoblastic leukemia (ALL) is considered an efficient therapeutic method in children. However, suboptimal long-term survival rates in adults, disease relapse, and drug-induced toxicities require novel therapeutic agents for ALL treatments. Today, natural products with pharmacological benefits play a significant role in treating different cancers. Among the most valued natural products, honey bees' royal jelly (RJ) is one of the most appreciated which has revealed anti-tumor activity against different human cancers. This study aimed to evaluate anti-leukemic properties and the molecular mechanisms of RJ cytotoxicity on ALL-derived Nalm-6 cells. Materials and Methods: The metabolic activity was measured by MTT assay. Apoptosis, cell distribution in the cell cycle, and intracellular reactive oxygen species (ROS) level were investigated using flow cytometry analysis. Moreover, quantitative real-time PCR (qRT-PCR) was performed to scrutinize the expression of various regulatory genes. Results: RJ significantly decreased the viability of Nalm-6 cells but had no cytotoxic effect on normal cells. In addition, RJ induced ROS-mediated apoptosis by up-regulating pro-apoptotic genes while decreasing anti-apoptotic gene expression. The results outlined that ROS-dependent up-regulation of FOXO4 and Sirt1 inhibits the cells' transition to the S phase of the cell cycle through p21 up-regulation. The qRT-PCR analysis of autophagy-related gene expression also demonstrated that RJ induced BECN1 mediated autophagy in Naml-6 cells. Conclusion: Taken together, this study showed that RJ can be utilized as a potent natural substance to induce ALL cells' programmed cell death. However, further studies are required to examine this compound's pharmaceutical application.

6.
Expert Rev Anticancer Ther ; 24(7): 493-512, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38690706

RESUMO

INTRODUCTION: As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED: The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION: The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.


Assuntos
Desenvolvimento de Medicamentos , Linfoma , Linfopoese , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Linfoma/patologia , Linfoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Progressão da Doença , Terapia de Alvo Molecular , Desenho de Fármacos , Diferenciação Celular
7.
Cell Biol Int ; 48(8): 1049-1068, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38812089

RESUMO

Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistência à Insulina/fisiologia , Animais , Insulina/metabolismo , Glucose/metabolismo , Tecido Adiposo/metabolismo
8.
Cell Biochem Funct ; 42(3): e3998, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561964

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinase , Humanos , Feminino , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
9.
Life Sci ; 346: 122652, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641048

RESUMO

Lung cancer is a highly lethal malignancy that poses a significant burden on public health worldwide. There have been numerous therapeutic approaches, among which cancer vaccines have emerged as a promising approach to harnessing the patient's immune system to induce long-lasting anti-tumor immunity. The current study aims to provide an overview of cancer vaccination in the context of lung cancer to establish a clearer landscape for lung cancer treatment. To provide a comprehensive review, we not only gathered the published studies of lung cancer vaccination and discussed their effectiveness and safety profile but also analyzed all the relevant clinical trials registered on www.clinicaltrials.gov until March 2024. We demonstrated all utilized vaccine platforms along with having a glance at novel technologies such as mRNA vaccines. The present review discussed the challenges and shortcomings of lung cancer vaccination, as well as the way they could be managed to pave the way for reaching the most optimized vaccine formulation.


Assuntos
Vacinas Anticâncer , Ensaios Clínicos como Assunto , Neoplasias Pulmonares , Vacinação , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Vacinação/métodos
10.
Mol Genet Genomics ; 299(1): 47, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649532

RESUMO

Multiple myeloma (MM) is a plasma cell dyscrasia that is characterized by the uncontrolled proliferation of malignant PCs in the bone marrow. Due to immunotherapy, attention has returned to the immune system in MM, and it appears necessary to identify biomarkers in this area. In this study, we created a prognostic model for MM using immune-related gene pairs (IRGPs), with the advantage that it is not affected by technical bias. After retrieving microarray data of MM patients, bioinformatics analyses like COX regression and least absolute shrinkage and selection operator (LASSO) were used to construct the signature. Then its prognostic value is assessed via time-dependent receiver operating characteristic (ROC) and the Kaplan-Meier (KM) analysis. We also used XCELL to examine the status of immune cell infiltration among MM patients. 6-IRGP signatures were developed and proved to predict MM prognosis with a P-value of 0.001 in the KM analysis. Moreover, the risk score was significantly associated with clinicopathological characteristics and was an independent prognostic factor. Of note, the combination of age and ß2-microglobulin with risk score could improve the accuracy of determining patients' prognosis with the values of the area under the curve (AUC) of 0.73 in 5 years ROC curves. Our model was also associated with the distribution of immune cells. This novel signature, either alone or in combination with age and ß2-microglobulin, showed a good prognostic predictive value and might be used to guide the management of MM patients in clinical practice.


Assuntos
Medula Óssea , Perfilação da Expressão Gênica , Mieloma Múltiplo , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/mortalidade , Humanos , Feminino , Prognóstico , Masculino , Perfilação da Expressão Gênica/métodos , Medula Óssea/patologia , Medula Óssea/imunologia , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão Gênica , Microglobulina beta-2/genética , Biomarcadores Tumorais/genética , Estimativa de Kaplan-Meier , Curva ROC , Transcriptoma/genética
11.
Mol Biol Rep ; 51(1): 420, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483663

RESUMO

BACKGROUND: Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS: The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT: The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION: Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.


Assuntos
Aminopiridinas , Cisplatino , Neoplasias Colorretais , Morfolinas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
12.
Thromb Res ; 235: 125-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335568

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disorder that causes a significant reduction in peripheral blood platelet count. Fortunately, due to an increased understanding of ITP, there have been significant improvements in the diagnosis and treatment of these patients. Over the past decade, there have been a variety of proven therapeutic options available for ITP patients, including intravenous immunoglobulins (IVIG), Rituximab, corticosteroids, and thrombopoietin receptor agonists (TPO-RAs). Although the effectiveness of current therapies in treating more than two-thirds of patients, still some patients do not respond well to conventional therapies or fail to achieve long-term remission. Recently, a significant advancement has been made in identifying various mechanisms involved in the pathogenesis of ITP, leading to the development of novel treatments targeting these pathways. It seems that new agents that target plasma cells, Bruton tyrosine kinase, FcRn, platelet desialylation, splenic tyrosine kinase, and classical complement pathways are opening new ways to treat ITP. In this study, we reviewed the pathophysiology of ITP and summarized updates in this population's management and treatment options. We also took a closer look at the 315 ongoing trials to investigate their progress status and compare the effectiveness of interventions. May our comprehensive view of ongoing clinical trials serve as a guiding beacon, illuminating the path towards future trials of different drugs in the treatment of ITP patients.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Contagem de Plaquetas , Plaquetas , Imunoglobulinas Intravenosas
13.
Clin Exp Pharmacol Physiol ; 51(4): e13847, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382534

RESUMO

The use of all-trans retinoic acid and arsenic trioxide resulted in favourable therapeutic responses in standard-risk acute promyelocytic leukaemia (APL) patients. However, resistance to these agents has made treating the high-risk subgroup more problematic, and possible side effects limit their clinical dosages. Numerous studies have proven the cytotoxic properties of Gaillardin, one of the Inula oculus-christi-derived sesquiterpene lactones. Due to the adverse effects of arsenic trioxide on the high-risk subgroup of APL patients, we aimed to assess the cytotoxic effect of Gaillardin on HL-60 cells as a single or combined-form approach. The results of the trypan blue and MTT assays outlined the potent cytotoxic properties of Gaillardin. The flow cytometric analysis and the mRNA expression levels revealed that Gaillardin attenuated the proliferative capacity of HL-60 cells through cell cycle arrest and induced apoptosis via reactive oxygen species generation. Moreover, the results of synergistic experiments indicated that this sesquiterpene lactone sensitizes HL-60 cells to the cytotoxic effects of arsenic trioxide. Taken together, the findings of the present investigation highlighted the antileukemic characteristics of Gaillardin by inducing G1 cell cycle arrest and triggering apoptosis. Gaillardin acts as an antileukemic metabolite against HL-60 cells and this study provides new insight into treating APL patients, especially in the high-risk subgroup.


Assuntos
Antineoplásicos , Leucemia , Sesquiterpenos , Humanos , Trióxido de Arsênio/farmacologia , Células HL-60 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Leucemia/tratamento farmacológico , Apoptose , Óxidos/farmacologia , Óxidos/uso terapêutico
14.
Cell Biochem Funct ; 42(1): e3913, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269520

RESUMO

Hepatocellular carcinoma (HCC) is one of the growing malignancies globally, affecting a myriad of people and causing numerous cancer-related deaths. Despite therapeutic improvements in treatment strategies over the past decades, HCC still remains one of the leading causes of person-years of life lost. Numerous studies have been conducted to assess the characteristics of HCC with the aim of predicting its prognosis and responsiveness to treatment. However, the identified biomarkers have shown limited sensitivity, and the translation of these findings into clinical practice has faced challenges. The development of sequencing techniques has facilitated the exploration of a wide range of genes, leading to the emergence of gene signatures. Although several studies assessed differentially expressed genes in normal and HCC tissues to find the unique gene signature with prognostic value, to date, no study has reviewed the task, and to the best of our knowledge, this review represents the first comprehensive analysis of relevant studies in HCC. Most gene signatures focused on immune-related genes, while others investigated genes related to metabolism, autophagy, and apoptosis. Even though no identical gene signatures were found, NDRG1, SPP1, BIRC5, and NR0B1 were the most extensively studied genes with prognostic value. Finally, despite challenges such as the lack of consistent patterns in gene signatures, we believe that comprehensive analysis of pertinent gene signatures will bring us a step closer to personalized medicine in HCC, where treatment strategies can be tailored to individual patients based on their unique molecular profiles.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Medicina de Precisão , Prognóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Apoptose
15.
Cancer Cell Int ; 24(1): 10, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183112

RESUMO

In the Modern era, immune checkpoint inhibitors (ICIs) have been the cornerstone of success in the treatment of several malignancies. Despite remarkable therapeutic advances, complex matrix together with significant molecular and immunological differences have led to conflicting outcomes of ICI therapy in gastrointestinal (GI) cancers. As far we are aware, to date, there has been no study to confirm the robustness of existing data, and this study is the first umbrella review to provide a more comprehensive picture about ICIs' efficacy and safety in GI malignancies. Systematic search on PubMed, Scopus, Web of Science, EMBASE, and Cochrane library identified 14 meta-analyses. The pooled analysis revealed that ICIs application, especially programmed death-1 (PD-1) inhibitors such as Camrelizumab and Sintilimab, could partially improve response rates in patients with GI cancers compared to conventional therapies. However, different GI cancer types did not experience the same efficacy; it seems that hepatocellular carcinoma (HCC) and esophageal cancer (EC) patients are likely better candidates for ICI therapy than GC and CRC patients. Furthermore, application of ICIs in a combined-modal strategy are perceived opportunity in GI cancers. We also assessed the correlation of PD-L1 expression as well as microsatellite status with the extent of the response to ICIs; overall, high expression of PD-L1 in GI cancers is associated with better response to ICIs, however, additional studies are required to precisely elaborate ICI responses with respect to microsatellite status in different GI tumors. Despite encouraging ICI efficacy in some GI cancers, a greater number of serious and fatal adverse events have been observed; further highlighting the fact that ICI therapy in GI cancers is not without cost, and further studies are required to utmost optimization of this approach in GI cancers.

16.
Mol Biol Rep ; 50(12): 10157-10167, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924446

RESUMO

BACKGROUND: Due to its remarkable efficacy in producing hematologic, cytogenetic, and molecular remissions, the FDA approved Imatinib as the first-line treatment for newly diagnosed Chronic Myeloid Leukemia (CML) patients. However, in some patients, failure to completely eradicate leukemic cells and the escape of these cells from death will lead to the development of resistance to Imatinib, and many are concerned about the prospects of this Tyrosine Kinase Inhibitor (TKI). It has been documented that the compensatory overexpression of c-Myc is among the most critical mechanisms that promote drug efflux and resistance in CML stem cells. METHODS: In order to examine the potential of c-Myc inhibition through the use of 10058-F4 to enhance the anti-leukemic properties of Imatinib, we conducted trypan blue and MTT assays. Additionally, we employed flow cytometric analysis and qRT-PCR to assess the effects of this combination on cell cycle progression and apoptosis. RESULTS: The findings of our study indicate that the combination of 10058-F4 and Imatinib exhibited significantly stronger anti-survival and anti-proliferative effects on CML-derived-K562 cells in comparison to either agent administered alone. It is noteworthy that these results were also validated in the CML-derived NALM-1 cell line. Molecular analysis of this synergistic effect revealed that the inhibition of c-Myc augmented the efficacy of Imatinib by modulating the expression of genes related to cell cycle, apoptosis, autophagy, and proteasome. CONCLUSIONS: Taken together, the findings of this investigation have demonstrated that the suppression of the c-Myc oncoprotein through the use of 10058-F4 has augmented the effectiveness of Imatinib, suggesting that this amalgamation could offer a fresh perspective on an adjunctive treatment for individuals with CML. Nevertheless, additional scrutiny, encompassing in-vivo examinations and clinical trials, is requisite.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Apoptose
17.
Front Immunol ; 14: 1181051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022569

RESUMO

Immunotherapy has revolutionized the treatment paradigm of many cancers, however, its effectiveness in prostate cancer patients is still under question. In the present systematic review and meta-analysis, we sought for assessing the efficacy and safety of Immune checkpoint inhibitors (ICIs) in patients with prostate cancer. PubMed, Scopus, Web of Science, and EMBASE databases were searched on Aguste 19, 2022. Thirty five studies met the eligibility criteria. The median overall survival (mOS) of all treatments was 14.1 months, with the longest and shortest mOS was seen among patients who received anti-CTLA-4 monotherapy and anti-PD-1/PD-L1+anti-CTLA-4 regimen at 24.9 and 9.2 months, respectively. Noteworthy, all types of adverse events had the lowest incidence in the anti-PD-1/PD-L1 monotherapy group. Considering the ICI monotherapy regimens, we found that fatigue, diarrhea, and infusion reaction had the highest incidence rates. Future studies evaluating the efficacy and safety of novel combination therapies with ICIs are warranted.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias da Próstata , Masculino , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Antígeno B7-H1 , Neoplasias da Próstata/tratamento farmacológico , Terapia Combinada , Bases de Dados Factuais
18.
Indian J Hematol Blood Transfus ; 39(4): 546-556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37786817

RESUMO

Over the past two decades, molecular targeted therapy has revolutionized the landscape of cancer treatment due to lower side effects as well as higher anticancer effects. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor which plays a crucial role in cell proliferation and death and the efficacy of PPARγ ligands either as monotherapy or in combination with traditional chemotherapy drugs has been proved by recent studies. In this study, we aimed to investigate the effects of pioglitazone, a well-known PPARγ stimulator, in ALL-derived NALM6 cells by using trypan blue assay, MTT assay, and flow cytometry analysis. Moreover, to investigate the molecular mechanism action of pioglitazone in these cells, we assessed the possible alterations in the expression of some target genes which regulate cell proliferation, apoptosis, and autophagy system. Our result demonstrated that pioglitazone induced a remarkable antileukemic effect on NALM6 cells through a PTEN-mediated manner. Based on the fact that PI3K hyperactivation is one of the main properties of ALL cells, the effects of PI3K inhibition using CAL-101 on pioglitazone-induced cytotoxicity were evaluated by combinatorial experiments. Moreover, the result of cell cycle assay and qRT-PCR demonstrated that pioglitazone-CAL-101 induced antileukemic effect mainly through induction of p21 and p27-mediated G1 arrest. Additionally, our result showed that inhibition of proteasome and autophagy system, two main cellular processes, increased the antileukemic effects of the agents. Taken together, we suggest a novel therapeutic application for PPARγ stimulators as a single agent or in combination with PI3K inhibitors that should be clinically evaluated in ALL patients.

19.
Int J Hematol Oncol Stem Cell Res ; 17(3): 145-155, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37817968

RESUMO

Background: The identification of long non-coding RNAs (lncRNAs) in the pathogenesis of acute myeloid leukemia (AML) has marked a new era in the molecular understating of the disease. This study investigated the correlation between the changes in the expression of lncRNAs, including HOTAIR, PVT-1, and CRNDE, and the alteration in the expression profile of FLT-3, c-Myc, STAT3, STAT5, and p27 in AML patients. Materials and Methods: Blood samples were collected from forty-one newly diagnosed AML patients and ten healthy individuals to evaluate the expression levels of the study genes using qRT-PCR analysis. The probable correlation between the gene expressions was determined using Pearson's correlation test. Results: The results showed that while there was a significant elevation in the expression of FLT3, c-Myc, STAT3, and HOTAIR, p27 expression remarkably diminished in AML patients compared to the control group. Also, a correlation was found between the expression of FLT-3 and p27 and the expression of HOTAIR and STAT3. It was assumed that FLT-3 had a role in increasing the proliferative and survival capacity of AML cells, at least partly, through c-Myc-mediated suppression of p27. Moreover, lncRNA HOTAIR showed to be involved in leukemia proliferation assumably by enhancing the expression of STAT3. Conclusion: Overall, the results of gene profile analysis suggested that studying the expression of HOTAIR, FLT-3, c-Myc, STAT3, and p27 could be helpful to AML patients, and each of these genes could be a valuable target for pharmaceutic intervention.

20.
Cell Biochem Funct ; 41(8): 930-952, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665068

RESUMO

The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Homeostase , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA