Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2321410121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748575

RESUMO

Here, we describe a group of basal forebrain (BF) neurons expressing neuronal Per-Arnt-Sim (PAS) domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1+ neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1+ neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1+ neurons was high, five to six times that of neighboring cholinergic, parvalbumin, or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1+ neurons to brain regions involved in sleep-wake control, motivated behaviors, and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area, and olfactory bulb. Chemogenetic activation of BF Npas1+ neurons in the light period increased the amount of wakefulness and the latency to sleep for 2 to 3 h, due to an increase in long wake bouts and short NREM sleep bouts. NREM slow-wave and sigma power, as well as sleep spindle density, amplitude, and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1+ neurons in stress responsiveness, the anatomical projections of BF Npas1+ neurons and the effect of activating them suggest a possible role for BF Npas1+ neurons in motivationally driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia, and other neuropsychiatric conditions involving BF.


Assuntos
Prosencéfalo Basal , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neurônios GABAérgicos , Vigília , Animais , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Camundongos , Vigília/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos Transgênicos , Masculino , Sono/fisiologia
2.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688901

RESUMO

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Assuntos
Adenosina , Núcleo Accumbens , Receptor A2A de Adenosina , Sono de Ondas Lentas , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Masculino , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Camundongos , Adenosina/metabolismo , Adenosina/farmacologia , Regulação Alostérica , Sono de Ondas Lentas/fisiologia , Sono de Ondas Lentas/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Luz , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Agonistas do Receptor A2 de Adenosina/farmacologia
3.
Sleep Adv ; 5(1): zpae022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638581

RESUMO

Sleep-wake scoring is a time-consuming, tedious but essential component of clinical and preclinical sleep research. Sleep scoring is even more laborious and challenging in rodents due to the smaller EEG amplitude differences between states and the rapid state transitions which necessitate scoring in shorter epochs. Although many automated rodent sleep scoring methods exist, they do not perform as well when scoring new datasets, especially those which involve changes in the EEG/EMG profile. Thus, manual scoring by expert scorers remains the gold standard. Here we take a different approach to this problem by using a neural network to accelerate the scoring of expert scorers. Sleep-Deep-Learner creates a bespoke deep convolution neural network model for individual electroencephalographic or local-field-potential (LFP) records via transfer learning of GoogLeNet, by learning from a small subset of manual scores of each EEG/LFP record as provided by the end-user. Sleep-Deep-Learner then automates scoring of the remainder of the EEG/LFP record. A novel REM sleep scoring correction procedure further enhanced accuracy. Sleep-Deep-Learner reliably scores EEG and LFP data and retains sleep-wake architecture in wild-type mice, in sleep induced by the hypnotic zolpidem, in a mouse model of Alzheimer's disease and in a genetic knock-down study, when compared to manual scoring. Sleep-Deep-Learner reduced manual scoring time to 1/12. Since Sleep-Deep-Learner uses transfer learning on each independent recording, it is not biased by previously scored existing datasets. Thus, we find Sleep-Deep-Learner performs well when used on signals altered by a drug, disease model, or genetic modification.

4.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986953

RESUMO

Here we describe a novel group of basal forebrain (BF) neurons expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1 + neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1 + neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1 + neurons was high, 5-6 times that of neighboring cholinergic, parvalbumin or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1 + neurons to brain regions involved in sleep-wake control, motivated behaviors and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area and olfactory bulb. Chemogenetic activation of BF Npas1 + neurons in the light (inactive) period increased the amount of wakefulness and the latency to sleep for 2-3 hr, due to an increase in long wake bouts and short NREM sleep bouts. Non-REM slow-wave (0-1.5 Hz) and sigma (9-15 Hz) power, as well as sleep spindle density, amplitude and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1 + neurons in stress responsiveness, the anatomical projections of BF Npas1 + neurons and the effect of activating them suggest a possible role for BF Npas1 + neurons in motivationally-driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia and other neuropsychiatric conditions involving BF. SIGNIFICANCE STATEMENT: We characterize a group of basal forebrain (BF) neurons in the mouse expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. BF Npas1 + neurons are a major subset of GABAergic neurons distinct and more numerous than cholinergic, parvalbumin or glutamate neurons. BF Npas1 + neurons target brain areas involved in arousal, motivation and olfaction. Activation of BF Npas1 + neurons in the light (inactive) period increased wakefulness and the latency to sleep due to increased long wake bouts. Non-REM sleep slow waves and spindles were reduced reminiscent of findings in several neuropsychiatric disorders. Identification of this major subpopulation of BF GABAergic wake-promoting neurons will allow studies of their role in insomnia, dementia and other conditions involving BF.

5.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187568

RESUMO

Sleep-wake scoring is a time-consuming, tedious but essential component of clinical and pre-clinical sleep research. Sleep scoring is even more laborious and challenging in rodents due to the smaller EEG amplitude differences between states and the rapid state transitions which necessitate scoring in shorter epochs. Although many automated rodent sleep scoring methods exist, they do not perform as well when scoring new data sets, especially those which involve changes in the EEG/EMG profile. Thus, manual scoring by expert scorers remains the gold-standard. Here we take a different approach to this problem by using a neural network to accelerate the scoring of expert scorers. Sleep-Deep-Net (SDN) creates a bespoke deep convolution neural network model for individual electroencephalographic or local-field-potential records via transfer learning of GoogleNet, by learning from a small subset of manual scores of each EEG/LFP record as provided by the end-user. SDN then automates scoring of the remainder of the EEG/LFP record. A novel REM scoring correction procedure further enhanced accuracy. SDN reliably scores EEG and LFP data and retains sleep-wake architecture in wild-type mice, in sleep induced by the hypnotic zolpidem, in a mouse model of Alzheimer's disease and in a genetic knock-down study, when compared to manual scoring. SDN reduced manual scoring time to 1/12. Since SDN uses transfer learning on each independent recording, it is not biased by previously scored existing data sets. Thus, we find SDN performs well when used on signals altered by a drug, disease model or genetic modification.

6.
Brain Res Bull ; 188: 223-232, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738502

RESUMO

Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4 Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.


Assuntos
Eletroencefalografia , Sono , Encéfalo/fisiologia , Sono/fisiologia
7.
Nat Commun ; 13(1): 2246, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473906

RESUMO

Identification of mechanisms which increase deep sleep could lead to novel treatments which promote the restorative effects of sleep. Here, we show that knockdown of the α3 GABAA-receptor subunit from parvalbumin neurons in the thalamic reticular nucleus using CRISPR-Cas9 gene editing increased the thalamocortical delta (1.5-4 Hz) oscillations which are implicated in many health-promoting effects of sleep. Inhibitory synaptic currents in thalamic reticular parvalbumin neurons were strongly reduced in vitro. Further analysis revealed that delta power in long NREM bouts prior to NREM-REM transitions was preferentially affected by deletion of α3 subunits. Our results identify a role for GABAA receptors on thalamic reticular nucleus neurons and suggest antagonism of α3 subunits as a strategy to enhance delta activity during sleep.


Assuntos
Parvalbuminas , Sono de Ondas Lentas , Animais , Camundongos , Neurônios/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Tálamo/fisiologia , Ácido gama-Aminobutírico
8.
Brain Struct Funct ; 226(6): 1755-1778, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33997911

RESUMO

The basal forebrain (BF) is involved in arousal, attention, and reward processing but the role of individual BF neuronal subtypes is still being uncovered. Glutamatergic neurons are the least well-understood of the three main BF neurotransmitter phenotypes. Here we analyzed the distribution, size, calcium-binding protein content and projections of the major group of BF glutamatergic neurons expressing the vesicular glutamate transporter subtype 2 (vGluT2) and tested the functional effect of activating them. Mice expressing Cre recombinase under the control of the vGluT2 promoter were crossed with a reporter strain expressing the red fluorescent protein, tdTomato, to generate vGluT2-cre-tdTomato mice. Immunohistochemical staining for choline acetyltransferase and a cross with mice expressing green fluorescent protein selectively in GABAergic neurons confirmed that cholinergic, GABAergic and vGluT2+ neurons represent distinct BF subpopulations. Subsets of BF vGluT2+ neurons expressed the calcium-binding proteins calbindin or calretinin, suggesting that multiple subtypes of BF vGluT2+ neurons exist. Anterograde tracing using adeno-associated viral vectors expressing channelrhodopsin2-enhanced yellow fluorescent fusion proteins revealed major projections of BF vGluT2+ neurons to neighboring BF cholinergic and parvalbumin neurons, as well as to extra-BF areas involved in the control of arousal or aversive/rewarding behavior such as the lateral habenula and ventral tegmental area. Optogenetic activation of BF vGluT2+ neurons elicited a striking avoidance of the area where stimulation was given, whereas stimulation of BF parvalbumin or cholinergic neurons did not. Together with previous optogenetic findings suggesting an arousal-promoting role, our findings suggest that BF vGluT2 neurons play a dual role in promoting wakefulness and avoidance behavior.


Assuntos
Prosencéfalo Basal , Animais , Aprendizagem da Esquiva , Prosencéfalo Basal/metabolismo , Colinérgicos , Neurônios Colinérgicos/metabolismo , Ácido Glutâmico , Camundongos , Parvalbuminas/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Vigília
9.
Curr Biol ; 30(12): 2379-2385.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413301

RESUMO

The ability to rapidly arouse from sleep is important for survival. However, increased arousals in patients with sleep apnea and other disorders prevent restful sleep and contribute to cognitive, metabolic, and physiologic dysfunction [1, 2]. Little is currently known about which neural systems mediate these brief arousals, hindering the development of treatments that restore normal sleep. The basal forebrain (BF) receives inputs from many nuclei of the ascending arousal system, including the brainstem parabrachial neurons, which promote arousal in response to elevated blood carbon dioxide levels, as seen in sleep apnea [3]. Optical inhibition of the terminals of parabrachial neurons in the BF impairs cortical arousals to hypercarbia [4], but which BF cell types mediate cortical arousals in response to hypercarbia or other sensory stimuli is unknown. Here, we tested the role of BF parvalbumin (PV) neurons in arousal using optogenetic techniques in mice. Optical stimulation of BF-PV neurons produced rapid transitions to wakefulness from non-rapid eye movement (NREM) sleep but did not affect REM-wakefulness transitions. Unlike previous studies of BF glutamatergic and cholinergic neurons, arousals induced by stimulation of BF-PV neurons were brief and only slightly increased total wake time, reminiscent of clinical findings in sleep apnea [5, 6]. Bilateral optical inhibition of BF-PV neurons increased the latency to arousal produced by exposure to hypercarbia or auditory stimuli. Thus, BF-PV neurons are an important component of the brain circuitry that generates brief arousals from sleep in response to stimuli, which may indicate physiological dysfunction or danger to the organism.


Assuntos
Estimulação Acústica , Nível de Alerta/fisiologia , Carboidratos/administração & dosagem , Neurônios/fisiologia , Ração Animal/análise , Animais , Prosencéfalo Basal/fisiologia , Dieta , Camundongos , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
10.
J Neurophysiol ; 123(1): 22-33, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747354

RESUMO

The type 5 metabotropic glutamate receptor (mGluR5) represents a novel therapeutic target for schizophrenia and other disorders. Schizophrenia is associated with progressive abnormalities in cortical oscillatory processes including reduced spindles (8-15 Hz) during sleep and increased delta (0.5-4 Hz)- and gamma-band activity (30-80 Hz) during wakefulness. mGluR5 knockout (KO) mice demonstrate many schizophrenia-like behaviors, including abnormal sleep. To examine the effects of mGluR5 on the maintenance of the neocortical circuitry responsible for such neural oscillations, we analyzed sleep/wake electroencephalographic (EEG) activity of mGluR5 KO mice at baseline, after 6 h of sleep deprivation, and during a visual method of cortical entrainment (visual steady state response). We hypothesized mGluR5-KO mice would exhibit translationally relevant abnormalities in sleep and neural oscillations that mimic schizophrenia. Power spectral and spindle density analyses were performed across 24-h EEG recordings in mGluR5-KO mice and wild-type (WT) controls. Novel findings in mGluR5 KO mice include deficits in sleep spindle density, wake alpha power, and 40-Hz visual task-evoked gamma power and phase locking. Sigma power (10-15 Hz), an approximation of spindle activity, was also reduced during non-rapid eye movement sleep transitions. Our observations on abnormal sleep/wake are generally in agreement with previous reports, although we did not replicate changes in rapid eye movement sleep. The timing of these phenotypes may suggest an impaired circadian process in mGluR5 KO mice. In conclusion, EEG phenotypes in mGluR5 KO mice resemble deficits observed in patients with schizophrenia. These findings implicate mGluR5-mediated pathways in several translationally relevant phenotypes associated with schizophrenia, and suggest that agents targeting this receptor may have harmful consequences on sleep health and daily patterns of EEG power.NEW & NOTEWORTHY Metabotropic glutamate receptor type 5 (mGluR5) knockout (KO) mice show several translationally relevant abnormalities in neural oscillatory activity associated with schizophrenia. These include deficits in sleep spindle density, sigma and alpha power, and 40-Hz task-evoked gamma power. The timing of these phenotypes suggests an impaired circadian process in these mice. Previously reported rapid eye movement sleep deficits in this model were not observed. These findings suggest mGluR5-enhancing drugs may improve sleep stability and sleep spindle density, which could impact memory and cognition.


Assuntos
Ondas Encefálicas/fisiologia , Ritmo Circadiano/fisiologia , Potenciais Evocados Visuais/fisiologia , Receptor de Glutamato Metabotrópico 5 , Esquizofrenia/fisiopatologia , Privação do Sono/fisiopatologia , Fases do Sono/fisiologia , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissonografia , Vigília/fisiologia
11.
Sci Rep ; 9(1): 3607, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837664

RESUMO

The thalamic reticular nucleus (TRN) is implicated in schizophrenia pathology. However, it remains unclear whether alterations of TRN activity can account for abnormal electroencephalographic activity observed in patients, namely reduced spindles (10-15 Hz) during sleep and increased delta (0.5-4 Hz) and gamma-band activity (30-80 Hz) during wakefulness. Here, we utilized optogenetic and reverse-microdialysis approaches to modulate activity of the major subpopulation of TRN GABAergic neurons, which express the calcium-binding protein parvalbumin (PV), and are implicated in schizophrenia dysfunction. An automated algorithm with enhanced efficiency and reproducibility compared to manual detection was used for sleep spindle assessment. A novel, low power, waxing-and-waning optogenetic stimulation paradigm preferentially induced spindles that were indistinguishable from spontaneously occurring sleep spindles without altering the behavioral state, when compared to a single pulse laser stimulation used by us and others. Direct optogenetic inhibition of TRN-PV neurons was ineffective in blocking spindles but increased both wakefulness and cortical delta/gamma activity, as well as impaired the 40 Hz auditory steady-state response. For the first time we demonstrate that spindle density is markedly reduced by (i) optogenetic stimulation of a major GABA/PV inhibitory input to TRN arising from basal forebrain parvalbumin neurons (BF-PV) and; (ii) localized pharmacological inhibition of low-threshold calcium channels, implicated as a genetic risk factor for schizophrenia. Together with clinical findings, our results support impaired TRN-PV neuron activity as a potential cause of schizophrenia-linked abnormalities in cortical delta, gamma, and spindle activity. Modulation of the BF-PV input to TRN may improve these neural abnormalities.


Assuntos
Neurônios GABAérgicos/fisiologia , Parvalbuminas/metabolismo , Esquizofrenia/fisiopatologia , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Vigília/fisiologia , Animais , Fenômenos Eletrofisiológicos , Camundongos , Optogenética
12.
Sleep ; 42(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476300

RESUMO

Study Objectives: Sleep spindles are abnormal in several neuropsychiatric conditions and have been implicated in associated cognitive symptoms. Accordingly, there is growing interest in elucidating the pathophysiology behind spindle abnormalities using rodent models of such disorders. However, whether sleep spindles can reliably be detected in mouse electroencephalography (EEG) is controversial necessitating careful validation of spindle detection and analysis techniques. Methods: Manual spindle detection procedures were developed and optimized to generate an algorithm for automated detection of events from mouse cortical EEG. Accuracy and external validity of this algorithm were then assayed via comparison to sigma band (10-15 Hz) power analysis, a proxy for sleep spindles, and pharmacological manipulations. Results: We found manual spindle identification in raw mouse EEG unreliable, leading to low agreement between human scorers as determined by F1-score (0.26 ± 0.07). Thus, we concluded it is not possible to reliably score mouse spindles manually using unprocessed EEG data. Manual scoring from processed EEG data (filtered, cubed root-mean-squared), enabled reliable detection between human scorers, and between human scorers and algorithm (F1-score > 0.95). Algorithmically detected spindles correlated with changes in sigma-power and were altered by the following conditions: sleep-wake state changes, transitions between NREM and REM sleep, and application of the hypnotic drug zolpidem (10 mg/kg, intraperitoneal). Conclusions: Here we describe and validate an automated paradigm for rapid and reliable detection of spindles from mouse EEG recordings. This technique provides a powerful tool to facilitate investigations of the mechanisms of spindle generation, as well as spindle alterations evident in mouse models of neuropsychiatric disorders.


Assuntos
Ondas Encefálicas/fisiologia , Eletroencefalografia/métodos , Sono REM/fisiologia , Sono de Ondas Lentas/fisiologia , Algoritmos , Animais , Bioensaio , Coleta de Dados , Feminino , Humanos , Hipnóticos e Sedativos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Registros , Zolpidem/farmacologia
13.
Sci Rep ; 8(1): 10730, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013200

RESUMO

The functions of purinergic P2 receptors (P2Rs) for extracellular adenosine triphosphate (ATP) are poorly understood. Here, for the first time, we show that activation of P2Rs in an important arousal region, the basal forebrain (BF), promotes wakefulness, whereas inhibition of P2Rs promotes sleep. Infusion of a non-hydrolysable P2R agonist, ATP-γ-S, into mouse BF increased wakefulness following sleep deprivation. ATP-γ-S depolarized BF cholinergic and cortically-projecting GABAergic neurons in vitro, an effect blocked by antagonists of ionotropic P2Rs (P2XRs) or glutamate receptors. In vivo, ATP-γ-S infusion increased BF glutamate release. Thus, activation of BF P2XRs promotes glutamate release and excitation of wake-active neurons. Conversely, pharmacological antagonism of BF P2XRs decreased spontaneous wakefulness during the dark (active) period. Together with previous findings, our results suggest sleep-wake regulation by BF extracellular ATP involves a balance between excitatory, wakefulness-promoting effects mediated by direct activation of P2XRs and inhibitory, sleep-promoting effects mediated by degradation to adenosine.


Assuntos
Prosencéfalo Basal/fisiologia , Receptores Purinérgicos P2/metabolismo , Vigília/fisiologia , Adenosina/metabolismo , Trifosfato de Adenosina/administração & dosagem , Trifosfato de Adenosina/análogos & derivados , Animais , Prosencéfalo Basal/citologia , Prosencéfalo Basal/efeitos dos fármacos , Eletrodos Implantados , Eletroencefalografia/instrumentação , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Modelos Animais , Técnicas de Patch-Clamp , Agonistas do Receptor Purinérgico P2/administração & dosagem , Antagonistas do Receptor Purinérgico P2/administração & dosagem , Receptores de Glutamato/metabolismo , Receptores Purinérgicos P2/efeitos dos fármacos , Sono/efeitos dos fármacos , Sono/fisiologia , Vigília/efeitos dos fármacos
14.
J Sleep Res ; 26(3): 377-385, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28397310

RESUMO

Sleep has been postulated to promote brain energy restoration. It is as yet unknown if increasing the energy availability within the brain reduces sleep need. The guanidine amino acid creatine (Cr) is a well-known energy booster in cellular energy homeostasis. Oral Cr-monohydrate supplementation (CS) increases exercise performance and has been shown to have substantial effects on cognitive performance, neuroprotection and circadian rhythms. The effect of CS on cellular high-energy molecules and sleep-wake behaviour is unclear. Here, we examined the sleep-wake behaviour and brain energy metabolism before and after 4-week-long oral administration of CS in the rat. CS decreased total sleep time and non-rapid eye movement (NREM) sleep significantly during the light (inactive) but not during the dark (active) period. NREM sleep and NREM delta activity were decreased significantly in CS rats after 6 h of sleep deprivation. Biochemical analysis of brain energy metabolites showed a tendency to increase in phosphocreatine after CS, while cellular adenosine triphosphate (ATP) level decreased. Microdialysis analysis showed that the sleep deprivation-induced increase in extracellular adenosine was attenuated after CS. These results suggest that CS reduces sleep need and homeostatic sleep pressure in rats, thereby indicating its potential in the treatment of sleep-related disorders.


Assuntos
Creatina/farmacologia , Homeostase/efeitos dos fármacos , Sono/efeitos dos fármacos , Sono/fisiologia , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Creatina/administração & dosagem , Eletroencefalografia , Metabolismo Energético/efeitos dos fármacos , Masculino , Microdiálise , Fosfocreatina/metabolismo , Ratos , Ratos Sprague-Dawley , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo , Sono REM/efeitos dos fármacos , Sono REM/fisiologia
15.
Brain Behav Immun ; 62: 137-150, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28109896

RESUMO

Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1ß) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1ß into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1ß, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1ß-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1ß. NLRP3, ASC, and IL1ß mRNA, IL-1ß protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Inflamassomos/genética , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Polissonografia , Transdução de Sinais/fisiologia , Privação do Sono/genética , Vigília/fisiologia
16.
J Neurophysiol ; 117(1): 327-335, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784808

RESUMO

Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive. We tested the ability of exogenous AD to augment homeostatic responses to sleep deprivation (SD) in newly weaned rats. In groups of postnatal day (P)22 and P30 rats, we collected dialysate from the BF/LPO during baseline (BSL) wake-sleep, SD, and recovery sleep (RS). HPLC analysis of microdialysis samples revealed that SD in P30 rats results in significant increases in AD levels compared with BSL. P22 rats do not exhibit changes in AD levels in response to SD. We recorded neuronal activity in the MnPO during BSL, SD, and RS at P22/P30. MnPO neurons exhibited adult-like increases in waking neuronal discharge across SD on both P22 and P30, but discharge rates during enforced wake were higher on P30 vs. P22. Central administration of AD (1 nmol) during SD on P22 resulted in increased sleep time and EEG slow-wave activity during RS compared with saline control. Collectively, these findings support the hypothesis that functional reorganization of an adenosinergic mechanism of sleep regulation contributes to the maturation of sleep homeostasis. NEW & NOTEWORTHY: Brain mechanisms that regulate the maturation of sleep are understudied. The present study generated first evidence about a potential mechanistic role for adenosine in the maturation of sleep homeostasis. Specifically, we demonstrate that early postweaning development in rats, when homeostatic response to sleep loss become adult like, is characterized by maturational changes in wake-related production/release of adenosine in the brain. Pharmacologically increased adenosine signaling in developing brain facilitates homeostatic responses to sleep deprivation.


Assuntos
Adenosina/metabolismo , Homeostase/fisiologia , Área Pré-Óptica/crescimento & desenvolvimento , Área Pré-Óptica/metabolismo , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Sono/fisiologia , Adenosina/farmacologia , Fatores Etários , Envelhecimento/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Cromatografia Líquida de Alta Pressão , Eletroencefalografia , Eletromiografia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Homeostase/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Privação do Sono/fisiopatologia , Vigília
17.
J Neurosci ; 36(6): 2057-67, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865627

RESUMO

Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT: Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel "opto-dialysis" probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of "opto-dialysis" for dissecting the complex brain circuitry underlying behavior.


Assuntos
Neurônios Colinérgicos/fisiologia , Prosencéfalo/fisiologia , Vigília/fisiologia , Acetilcolina/metabolismo , Animais , Antagonistas Colinérgicos/administração & dosagem , Antagonistas Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Eletroencefalografia , Eletromiografia , Feminino , Masculino , Camundongos , Microdiálise , Optogenética , Parvalbuminas/metabolismo , Estimulação Luminosa , Prosencéfalo/efeitos dos fármacos , Fases do Sono/fisiologia , Vigília/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
18.
Nat Sci Sleep ; 8: 9-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26793010

RESUMO

Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism.

19.
Proc Natl Acad Sci U S A ; 112(11): 3535-40, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733878

RESUMO

Cortical gamma band oscillations (GBO, 30-80 Hz, typically ∼40 Hz) are involved in higher cognitive functions such as feature binding, attention, and working memory. GBO abnormalities are a feature of several neuropsychiatric disorders associated with dysfunction of cortical fast-spiking interneurons containing the calcium-binding protein parvalbumin (PV). GBO vary according to the state of arousal, are modulated by attention, and are correlated with conscious awareness. However, the subcortical cell types underlying the state-dependent control of GBO are not well understood. Here we tested the role of one cell type in the wakefulness-promoting basal forebrain (BF) region, cortically projecting GABAergic neurons containing PV, whose virally transduced fibers we found apposed cortical PV interneurons involved in generating GBO. Optogenetic stimulation of BF PV neurons in mice preferentially increased cortical GBO power by entraining a cortical oscillator with a resonant frequency of ∼40 Hz, as revealed by analysis of both rhythmic and nonrhythmic BF PV stimulation. Selective saporin lesions of BF cholinergic neurons did not alter the enhancement of cortical GBO power induced by BF PV stimulation. Importantly, bilateral optogenetic inhibition of BF PV neurons decreased the power of the 40-Hz auditory steady-state response, a read-out of the ability of the cortex to generate GBO used in clinical studies. Our results are surprising and novel in indicating that this presumptively inhibitory BF PV input controls cortical GBO, likely by synchronizing the activity of cortical PV interneurons. BF PV neurons may represent a previously unidentified therapeutic target to treat disorders involving abnormal GBO, such as schizophrenia.


Assuntos
Prosencéfalo Basal/fisiologia , Ritmo Gama/fisiologia , Neurônios/fisiologia , Parvalbuminas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Channelrhodopsins , Neurônios Colinérgicos/fisiologia , Potenciais Evocados Auditivos/fisiologia , Proteínas Luminescentes/metabolismo , Camundongos , Optogenética , Reprodutibilidade dos Testes , Transdução Genética
20.
Eur J Neurosci ; 41(2): 182-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25369989

RESUMO

The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex , lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low-theta power (5-7 Hz), but not high-theta (7-9 Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx ]ex and [AD]ex . Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx ]ex , [AD]ex and low-theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex . Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low-theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP.


Assuntos
Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Homeostase/fisiologia , Sono/fisiologia , Adenosina/metabolismo , Animais , Anticorpos Monoclonais , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/fisiopatologia , Neurônios Colinérgicos/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Ritmo Delta/fisiologia , Homeostase/efeitos dos fármacos , Ácido Láctico/metabolismo , Masculino , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitritos/metabolismo , Compostos Nitrosos/farmacologia , Ácido Pirúvico/metabolismo , Ratos Wistar , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Sono/efeitos dos fármacos , Privação do Sono/fisiopatologia , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...