Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337199

RESUMO

This paper investigates making an injection mouldable conductive plastic formulation that aims for conductivity into the electromagnetic interference (EMI) shielding range, with good mechanical properties (i.e., stiffness, strength, and impact resistance). While conductivity in the range (electrostatic charge dissipation) and EMI shielding have been attained by incorporating conductive fillers such as carbon black, metals powders, and new materials, such as carbon nanotubes (CNTs), this often occurs with a drop in tensile strength, elongation-to-break resistance, and impact resistance. It is most often the case that the incorporation of high modulus fillers leads to an increase in modulus but a drop in strength and impact resistance. In this work, we have used short carbon fibres as the conductive filler and selected a 50/50 PBT/rPET (recycled PET) for the plastic matrix. Carbon fibres are cheaper than CNTs and graphenes. The PBT/rPET has low melt viscosity and crystallises sufficiently fast during injection moulding. To improve impact resistance, a styrene-ethylene-butadiene-styrene (SEBS) rubber toughening agent was added to the plastic. The PBT/rPET had very low-impact resistance and the SEBS provided rubber toughening to it; however, the rubber caused a drop in the tensile modulus and strength. The short carbon fibre restored the modulus and strength, which reached higher value than the PBT/rPET while providing the conductivity. Scanning electron microscope pictures showed quite good bonding of the current filler (CF) to the PBT/rPET. An injection mouldable conductive plastic with high conductivity and raised modulus, strength, and impact resistance could be made.

2.
Polymers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688251

RESUMO

In previous works, we had found that the addition of micron-sized, irregular-shaped aluminum (Al) powder, or Al nano platelets (flakes), improved the mechanical properties of polyesters, and that, additionally, the flakes led to an increase in electrical conductivity. The aim of this work was to examine the effect of nano-spherical particles of aluminum in a 60/40 PBT/PET polyester blend. A blend was used because it can help with the formation of a segregated network of metal particles that allows electrical conductivity at low loading. The notched Izod impact of Al nano-spherical composites increased with nano Al content up to an addition level of 2 vol.%. However, the tensile strength and flexural strength decreased gradually with increasing filler loading. Thus, the spherical shape and nano size of the Al particle caused it to be less effective than the micron-sized, irregular-shaped Al powder, or the Al flakes. The reason for this is that, while nano spherical particles have high surface area for bonding with the matrix, the Al-Al aggregation stands in the way of wetting by the polymer melt, whereas aggregation in flakes does not cause as much of a problem. The segregated network structure to enhance electrical conductivity did not form in this blend system with nano spherical particles. The nano-spherical Al acted as a nucleating agent but did not cause transesterification between the two polyesters or make it more susceptible to degradation.

3.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631976

RESUMO

Laser Sintering (LS) was the first Powder Bed Fusion (PBF) method for polymers and it is now quite an established process for rapid prototyping and even for the production of functional parts. High Speed Sintering (HSS) is a variant of PBF which was later developed and it has the potential to be more scalable than LS. Most of the work for HSS and LS has been conducted with polyamide-12 (PA 12). This work reports the first effort to use polyethylene terephthalate (PET) in HSS. Well defined, simple and complex parts could be printed without any build failures. However, limitations were induced by current HSS machines which led to some curvature (warpage) in tensile bars after manufacturing. The reason for this was that all currently available machines for HSS are built for polymers such as polyamide 12, which means their maximum bed temperature is limited to 190 °C. This corresponds to the lower limit of processability of PET in PBF processes. The slightly curved tensile bars were straightened by heating them to 230 °C with a weight on top, and afterwards the mechanical properties were measured. The tensile modulus was similar to what was obtained with PET via LS but the strength and elongation-at-break (EAB) was lower. Microscopy showed that the reason for the lower strength and EAB was the incomplete melting of particles. This arose from the temperature limitation of the current generation of HSS machines. The porosity was established as 2.23% by helium pycnometry which is the same as for LS. The results of the thermal analysis indicated that the PET parts manufactured with HSS were semi-crystalline like the PET parts manufactured via LS.

4.
Polymers (Basel) ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335423

RESUMO

Conductive plastics are made by placing conductive fillers in polymer matrices. It is known that a conductive filler in a binary polymer blend with a co-continuous morphology is more effective than in a single polymer, because it aids the formation of a 'segregated conductive network'. We embedded a relatively low-cost conductive filler, aluminium nano platelets, in a 60/40 PBT/PET polymer blend. While 25 vol.% of the Al nanoplatelets when placed in a single polymer (PET) gave a material with the resistivity of an insulator (1014 Ωcm), the same Al nano platelets in the 60/40 PBT/PET blend reduced the resistivity to 7.2 × 107 Ωcm, which is in the category of an electrostatic charge dissipation material. While PET tends to give amorphous articles, the 60/40 PBT/PET blends crystallised in the time scale of the injection moulding and hence the conductive articles had dimensional stability above the Tg of PET.

5.
Polymers (Basel) ; 14(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35160620

RESUMO

Previously, we reported that amorphous poly(ethylene terephthalate) (PET) filled with irregular nodular aluminium (Al) particles gave simultaneous increases in tensile modulus, tensile strength, and impact resistance, which is unusual for materials. Here, we investigated the effect of the particle shape and size by using nano-platelet Al. The Al nano-platelets had a thickness higher than graphenes and clays, but lower than mica and talc, and due to their large widths, they had high aspect ratios. Due to the ductility of Al, the platelets maintained the high aspect ratio and did not snap during injection moulding. In addition to avoiding the usual drop in tensile strength and impact, the composites with nano Al platelets gave an unusually high flexural modulus (8 GPa), which was almost double that attained practically with talc, mica, and graphene. This was because of the high tendency of the Al nano platelets to become oriented during moulding. The Al-PET composite would be a more cost-and-performance effective combination for making conductive composites. The Al is a cheaper material than graphene, surface treatment for adhesion (to PET) is unnecessary, and dispersion issues, such as exfoliation and de-aggregation, are not a problem.

6.
Polymers (Basel) ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911602

RESUMO

Metal-plastic composites have the potential to combine enhanced electrical and thermal conductivity with a lower density than a pure metal. The drawback has often been brittleness and low impact resistance caused by weak adhesion between the metal filler and the plastic. Based on our observation that aluminum foil sticks very strongly to poly(ethylene terephthalate) (PET) if it is used as a backing during compression moulding, this work set out to explore PET filled with a micro and a nano aluminum (Al) powder. In line with other composites using filler particles with low aspect-ratio, the tensile modulus increased somewhat with loading. However, unlike most particle composites, the strength did not decrease and most surprisingly, the Izod impact resistance increased, and in fact more than doubled with certain compositions. Thus, the Al particles acted as a toughening agent without decreasing the modulus and strength. This would be the first case where addition of a metal powder to a plastic increased the modulus and impact resistance simultaneously. The Al particles also acted as nucleating agents but it was not sufficient to make PET crystallize as fast as the injection moulding polyester, poly(butylene terephthalate) (PBT).

7.
Polymers (Basel) ; 11(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835368

RESUMO

The 3D printing of articles by the effect of a directed laser beam on a plastic powder is a demanding process, and unlike injection molding, very few polymers work well enough with it. Recently, we reported that poly(ethylene terephthalate) (PET) powder has intrinsically good properties for 3D printing. Basic mechanical properties were shown earlier and it was demonstrated that unfused but heat-exposed PET powder does not degrade quickly allowing good re-use potential. In this work, we conducted a detailed comparison of the mechanical properties of PET and polyamide 12 from different build orientations. PET powders with two different molecular weights were used. With the high molecular weight powder, the processing parameters were optimized, and the printed bars showed little difference between the different orientations, which means there is low anisotropy in mechanical properties of built parts. Based on processing experience of the first powder, the second powder with a lower molecular weight was also very printable and complex parts were made with ease from the initial printing trials; since the process parameters were not optimized then, lower mechanical properties were obtained. While the intrinsic material properties of PET (melting and re-crystallization kinetics) are not the best for injection molding, PET is eminently suitable for powder bed fusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA