Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; 129(2): 379-386, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33021853

RESUMO

CONTEXT: Increased free fatty acids (FFAs) levels, typical in obesity condition, can contribute to systemic lipotoxicity and inflammation adversely influencing Inflammatory Bowel Disease development and progression. Anthocyanins possess health promoting properties mainly associated to the induction of Nrf2-regulated cytoprotective proteins. OBJECTIVE: Using a novel experimental model, we evaluated the in vitro intracellular mechanisms involved in FFAs modulation of intestinal epithelial lipotoxicity and the protective effects of cyanidin-3-O-glucoside (C3G) in Caco-2 cells. RESULTS: Caco-2 exposed to palmitic acid (PA) in the serosal (basolateral) side showed a combined state of epithelial inflammation, inducing NF-κB pathway and downstream cytokines, that was reverted by C3G apical pre-treatment. In addition, PA altered intracellular redox status and induced reactive oxygen species that were reduced by C3G via the redox-sensitive Nrf2 signalling. DISCUSSION AND CONCLUSION: Results suggest that anti-inflammatory properties of anthocyanins, mediated by Nrf2, could represent an interesting tool for intestinal inflammatory disorders.


Assuntos
Antocianinas , Palmitatos , Humanos , Antocianinas/farmacologia , Células CACO-2 , Palmitatos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Células Epiteliais , Inflamação , Ácido Palmítico/toxicidade , Glucosídeos/farmacologia
2.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080136

RESUMO

BACKGROUND: The consumption of foods rich in anthocyanins (ACN) have been associated with beneficial properties in chronic inflammatory disorders such as intestinal bowel diseases (IBD). These effects were attributed not only to a direct antioxidant mechanism but also to the modulation of cell redox-dependent signaling. However, ACN bioavailability is low for their poor stability in the digestive tract, so ACN gastrointestinal digestion should be considered. METHODS: To have a more realistic knowledge of the effects of ACN, we performed an in vitro simulated gastrointestinal digestion of an ACN-rich purified and standardized bilberry and blackcurrant extract (BBE), followed by an evaluation of ACN composition modification (HPLC-DAD and pH differential method) and antioxidant activity (FRAP assay). Then, we studied the effects of BBE gastrointestinal extract on Caco-2 exposed to TNF-α. RESULTS: The results confirmed the high instability of ACN in the mild alkaline environment of the small intestine (17% recovery index). However, the digested BBE maintained part of its bioactivity. Additionally, BBE gastrointestinal extract inhibited the TNF-α-induced NF-κB pathway in Caco-2 and activated the Nrf2 pathway. CONCLUSIONS: Although ACN stability is affected by gastrointestinal digestion, the anti-inflammatory and antioxidant activity of digested extracts were confirmed; thus, the loss of ACN can probably be counterweighed by their metabolites. Then, ACN introduced by diet or food supplements could represent an approach for IBD prevention.


Assuntos
Doenças Inflamatórias Intestinais , Ribes , Antocianinas/metabolismo , Antocianinas/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células CACO-2 , Células Epiteliais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Extratos Vegetais/química , Ribes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Arch Biochem Biophys ; 691: 108488, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32692982

RESUMO

Obesity is a metabolic disorder characterized by excess adipose tissue, macrophages infiltration, and inflammation which in turn lead to insulin-resistance. Epidemiological evidences reported that anthocyanins possess not only high antioxidant and antiinflammatory activities, but also improve metabolic complications associated with obesity. The aim of this work was to evaluate the in vitro beneficial effects of cyanidin-3-O-glucoside (C3G) in counteracting inflammation and insulin-resistance in 3T3-L1 hypertrophic adipocytes exposed to palmitic acid (PA). In the present study murine 3T3-L1 adipocytes were pretreated with C3G for 24 h and then exposed to palmitic acid (PA) for 24 h. Real-time PCR, western blotting analysis and Oil Red O staining were applied for investigating the mechanism involved in adipocytes dysfunction. C3G pretreatment reduced lipid accumulation, PPARγ pathway and NF-κB pathway induced by PA in murine adipocytes. In addition, our data demonstrated that PA reduced insulin signaling via IRS-1 Ser307phosphorylation while C3G dose-dependently improved insulin sensitivity restoring IRS-1/PI3K/Akt pathway. Furthermore, C3G improved adiponectin mRNA levels altered by PA in 3T3-L1 murine and SGBS human adipocytes. Herein reported data demonstrate that C3G ameliorated adipose tissue dysfunction, thus suggesting new potential roles for this compound of nutritional interest in the prevention of pathological conditions linked to obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Antocianinas/farmacologia , Glucosídeos/farmacologia , Inflamação/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Adiponectina/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Resistência à Insulina/fisiologia , Camundongos , NF-kappa B/metabolismo , PPAR gama/metabolismo , Ácido Palmítico/farmacologia
4.
Curr Med Chem ; 27(12): 1955-1996, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30417771

RESUMO

Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.


Assuntos
Doenças não Transmissíveis , Antocianinas , Antioxidantes , Humanos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Oxirredução , Estresse Oxidativo
5.
Phytother Res ; 33(7): 1888-1897, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31155812

RESUMO

Increased adiposity has been associated with adipose tissue low-grade inflammation leading to insulin resistance. Adipocyte differentiation inhibitors are expected to be effective in preventing obesity and related diseases. Anthocyanins (ACNs) are associated to enhanced adipocyte function and protection from metabolic stress. Herein, we evaluated the in vitro protective effects of an ACN rich extract against palmitic acid (PA)-induced hypertrophy, inflammation, and insulin resistance in 3T3-L1 adipocytes. ACN extract pretreatment reduces lipid accumulation and peroxisome proliferators-activated receptor-γ protein levels induced by PA. In addition, PA induces inflammation with activation of NF-κB pathway, whereas ACN extract pretreatment dose-dependently inhibited this pathway. Furthermore, adipocyte dysfunction associated with hypertrophy induces insulin resistance by affecting phosphatidylinositol 3-kinase-protein kinase B/Akt axis, GLUT-1, and adiponectin mRNA levels. ACN extract pretreatment reverts these effects induced by PA and moreover was able to induce insulin pathway with levels higher than insulin control cells, supporting an insulin sensitizer role for ACNs. This study demonstrates a prevention potential of ACNs against obesity comorbidities, due to their protective effects against inflammation/insulin resistance in adipocytes. In addition, these results contribute to the knowledge and strategies on the evaluation of the mechanism of action of ACNs from a food source under basal and insulin resistance conditions related to obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Resistência à Insulina , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Hipertrofia , Camundongos , Ácido Palmítico
6.
Phytomedicine ; 55: 23-30, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668434

RESUMO

BACKGROUND: Glioma is the most common primary cancer in central nervous system, especially in brain. Paclitaxel (PTX) is a microtubule stabilizing agent with anticancer potential, but its clinical application to brain tumours is limited by drug resistance, side effects, and lower brain penetration. PURPOSE: Herein we explored the in vitro effects, in glioma C6 cells, of the combination of PTX with curcumin, a natural compound with chemotherapeutic activity, in order to improve cytotoxic effects and overcome PTX limitations. RESULTS: Our data confirmed PTX antiproliferative activity that was improved by curcumin. These effects were confirmed by clonogenic assay and G0/G1 cell cycle arrest. PTX significantly promoted generation of intracellular reactive species (RS), while curcumin did not affect RS production; the combination of the two drugs resulted in a slight but significant increase in RS levels. Furthermore, we found a constitutive activation of NF-κB in C6 cell line that was inhibited by PTX and curcumin. Interestingly, combination of the drugs totally inhibited NF-κB nuclear translocation and reduced IκB phosphorylation. Our results also supported the involvement of p53-p21 axis in the anticancer effects of curcumin and PTX. The combination of the two drugs further increased p53 and p21 levels enhancing the antiproliferative effects. Furthermore, PTX plus curcumin most impressively activated caspase-3, effector of apoptosis pathways, and reduced the expression of the anti-apoptotic protein Bcl-2. CONCLUSION: In conclusion, our findings demonstrated that combination of PTX and curcumin exerts a potentiated anti-glioma efficacy in vitro that may help in reducing dosage and/or minimizing side effects of cytotoxic therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Curcumina/farmacologia , Glioma/patologia , Humanos , NF-kappa B/metabolismo , Paclitaxel/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2 , Ratos , Transdução de Sinais/efeitos dos fármacos
7.
Mediators Inflamm ; 2017: 3454023, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373746

RESUMO

Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G). In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.


Assuntos
Antocianinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glucosídeos/farmacologia , Intestinos/citologia , Células CACO-2 , Selectina E/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Immunoblotting , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA