Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732992

RESUMO

In this contribution, a wearable microwave imaging system for real-time monitoring of brain stroke in the post-acute stage is described and validated. The system exploits multistatic/multifrequency (only 50 frequency samples) data collected via a low-cost and low-complexity architecture. Data are collected by an array of only 16 antennas moved by pneumatic system. Phantoms, built from ABS material and filled with appropriate Triton X-100-based mixtures to mimic the different head human tissues, are employed for the experiments. The microwave system exploits the differential scattering measures and the Incoherent MUSIC algorithm to provide a 3D image of the region under investigation. The shown results, although preliminary, confirm the potential of the proposed microwave system in providing reliable results, including for targets whose evolution is as small as 16 mL in volume.


Assuntos
Imagens de Fantasmas , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Algoritmos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Micro-Ondas , Dispositivos Eletrônicos Vestíveis , Imageamento Tridimensional/métodos
2.
Healthc Technol Lett ; 3(3): 218-221, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27733930

RESUMO

This Letter introduces a feasibility study of a scanning system for applications in biomedical bone imaging operating in the microwave range 0.5-4 GHz. Mechanical uncertainties and data acquisition time are minimised by using a fully automated scanner that controls two antipodal Vivaldi antennas. Accurate antenna positioning and synchronisation with data acquisition enables a rigorous proof-of-concept for the microwave imaging procedure of a multi-layer phantom including skin, fat, muscle and bone tissues. The presence of a suitable coupling medium enables antenna miniaturisation and mitigates the impedance mismatch between antennas and phantom. The three-dimensional image of tibia and fibula is successfully reconstructed by scanning the multi-layer phantom due to the distinctive dielectric contrast between target and surrounding tissues. These results show the viability of a microwave bone imaging technology which is low cost, portable, non-ionising, and does not require specially trained personnel. In fact, as no a-priori characterisation of the antenna is required, the image formation procedure is very conveniently simplified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...