Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Microb Pathog ; 191: 106665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685359

RESUMO

Fungal infections caused by Candida species pose a serious threat to humankind. Antibiotics abuse and the ability of Candida species to form biofilm have escalated the emergence of drug resistance in clinical settings and hence, rendered it more difficult to treat Candida-related diseases. Lethal effects of Candida infection are often due to inefficacy of antimicrobial treatments and failure of host immune response to clear infections. Previous studies have shown that a combination of riboflavin with UVA (riboflavin/UVA) light demonstrate candidacidal activity albeit its mechanism of actions remain elusive. Thus, this study sought to investigate antifungal and antibiofilm properties by combining riboflavin with UVA against Candida albicans and non-albicans Candida species. The MIC20 for the fluconazole and riboflavin/UVA against the Candida species tested was within the range of 0.125-2 µg/mL while the SMIC50 was 32 µg/mL. Present findings indicate that the inhibitory activities exerted by riboflavin/UVA towards planktonic cells are slightly less effective as compared to controls. However, the efficacy of the combination towards Candida species biofilms showed otherwise. Inhibitory effects exerted by riboflavin/UVA towards most of the tested Candida species biofilms points towards a variation in mode of action that could make it an ideal alternative therapeutic for biofilm-related infections.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Candida , Testes de Sensibilidade Microbiana , Riboflavina , Raios Ultravioleta , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Riboflavina/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Fluconazol/farmacologia , Humanos
2.
Adv Pharm Bull ; 14(1): 105-119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585461

RESUMO

Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.

3.
Nutr Res ; 119: 1-20, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708600

RESUMO

Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.


Assuntos
Flavina-Adenina Dinucleotídeo , Riboflavina , Humanos , Flavina-Adenina Dinucleotídeo/metabolismo , Mononucleotídeo de Flavina/metabolismo , Piridoxina , Coenzimas
4.
Heliyon ; 9(3): e14370, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950587

RESUMO

Toxoplasma gondii (T. gondii) is a parasite capable of residing in the brain of their host which influences behaviour changes due to alterations in the neurotransmitters. Consequently, dopamine receptors (DRD) and indoleamine 2, 3 dioxygenase (IDO) dysregulation facilitate the progression of behaviour changes in a host as a response to infection. This study tested the effect of neurotransmitter changes as a result of T. gondii infection on rats cognitive impairment. The T. gondii strain of type I, II and III from Malaysia were previously identified by standard procedures. Sporulated oocysts each of type I, II and III were inoculated separately into three groups of Wistar rats (n = 9) respectively. Two separate control groups received either phosphate buffered saline (PBS) or MK-801 (dizocilpine). Behaviour changes were evaluated at nine weeks post infection in a square box, elevated plus maze and gene expression level of DRD and IDO compounds. The study revealed increased fatal feline attraction, reduced anxiety, decreased DRD and increased IDO gene expression in the T. gondii infected groups and MK-801 compared to the PBS control group. In conclusion, T. gondii infection alter the level of neurotransmitters in rat which cause cognitive impairment. This implies that all the T. gondii strain can cause behaviour changes if human were infected.

5.
Malays J Med Sci ; 29(2): 8-17, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35528818

RESUMO

In the vascular wall, defence against pathogenic damage requires a group of monocytes, the endothelium, dendritic cells, macrophages and a subsequent involvement of pattern recognition receptors anticipating damage-associated molecular patterns (DAMPs) to initiate an innate immune response. The endothelium plays a crucial role in regulating the duration, location and extent of the inflammatory cascade to ensure a definitive immune defence. Molecular changes in the expression of chemokines and cell adhesion molecules ensure protective responses against infection and injury. The multiprotein oligomer complex nucleotide-binding oligomerisation domain (NOD)-like receptor pyrin domain 3 (NLRP3) inflammasome plays a key role in the activation of inflammatory processes in response to DAMPs and pattern-associated molecular patterns. As a result of NLRP3 inflammasome activation, caspase-1 is activated and interleukin-1ß (IL-1ß) is produced. Caspase-1 is the main mediator of inflammatory feedback to tissue injury, and it is engaged both in the initiation of the inflammatory response and in the induction of cell death. NLRP3 inflammasome promotes further inflammatory responses and pyroptosis in the vascular endothelium; thus, its optimum regulation is crucial in cardiovascular homeostasis. This review outlines our current perception of the role of NLRP3 in vascular endothelial cells.

6.
Curr Res Microb Sci ; 3: 100111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35199072

RESUMO

Riboflavin, or more commonly known as vitamin B2, forms part of the component of vitamin B complex. Riboflavin consisting of two important cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are involved in multiple oxidative-reduction processes and energy metabolism. Besides maintaining human health, different sources reported that riboflavin can inhibit or inactivate the growth of different pathogens including bacteria, viruses, fungi and parasites, highlighting the possible role of riboflavin as an antimicrobial agent. Moreover, riboflavin and flavins could produce reactive oxygen species (ROS) when exposed to light, inducing oxidative damage in cells and tissues, and thus are excellent natural photosensitizers. Several studies have illustrated the therapeutic efficacy of photoactivated riboflavin against nosocomial infections and multidrug resistant bacterial infections as well as microbial associated biofilm infections, revealing the potential role of riboflavin as a promising antimicrobial candidate, which could serve as one of the alternatives in fighting the global crisis of the emergence of antimicrobial resistance seen in different pathogenic microbes. Riboflavin could also be involved in modulating host immune responses, which might increase the pathogen clearance from host cells and increase host defense against microbial infections. Thus, the dual effects of riboflavin on both pathogens and host immunity, reflected by its potent bactericidal effect and alleviation of inflammation in host cells further imply that riboflavin could be a potential candidate for therapeutic intervention in resolving microbial infections. Hence, this review aimed to provide some insights on the promising role of riboflavin as an antimicrobial candidate and also a host immune-modulator from a multi-perspective view as well as to discuss the application and challenges on using riboflavin in photodynamic therapy against various pathogens and microbial biofilm-associated infections.

7.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576904

RESUMO

Treatment of herpes simplex infection requires high and frequent doses of oral acyclovir to attain its maximum therapeutic effect. The current therapeutic regimen of acyclovir is known to cause unwarranted dose-related adverse effects, including acute kidney injury. For this reason, a suitable delivery system for acyclovir was developed to improve the pharmacokinetic limitations and ultimately administer the drug at a lower dose and/or less frequently. In this study, solid lipid nanoparticles were designed to improve the oral bioavailability of acyclovir. The central composite design was applied to investigate the influence of the materials on the physicochemical properties of the solid lipid nanoparticles, and the optimized formulation was further characterized. Solid lipid nanoparticles formulated from Compritol 888 ATO resulted in a particle size of 108.67 ± 1.03 nm with an entrapment efficiency of 91.05 ± 0.75%. The analyses showed that the optimum combination of surfactant and solid lipid produced solid lipid nanoparticles of good quality with controlled release property and was stable at refrigerated and room temperature for at least 3 months. A five-fold increase in oral bioavailability of acyclovir-loaded solid lipid nanoparticles was observed in rats compared to commercial acyclovir suspension. This study has presented promising results that solid lipid nanoparticles could potentially be used as an oral drug delivery vehicle for acyclovir due to their excellent properties.


Assuntos
Aciclovir , Nanopartículas , Animais , Disponibilidade Biológica , Portadores de Fármacos/química , Lipídeos/química , Tamanho da Partícula , Ratos
8.
J Tradit Complement Med ; 11(5): 419-426, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522636

RESUMO

BACKGROUND AND AIM: Postpartum depression (PPD) is a familiar problem which is associated with about 10-20% of women after child delivery. Fish oil (FO) has a therapeutic potentials to many diseases including mood disorders. However, there is paucity of data on the effects of FO supplementation on PPD rat model. Hence, this study aimed at investigating the potentials of FO in ameliorating depressive-like behaviors in PPD rat by evaluating the involvement of NLRP3-inflammasome. EXPERIMENTAL PROCEDURE: Thirty six virgin adult female rats (n = 6) were randomly divided into six groups; Group 1-3 were normal control (NC), Sham (SHAM) and ovariectomized group (OVX) respectively whereas group 4-6 were PPD rats forced-fed once daily with distilled water (PPD), fish oil (PPD + FO; 9 g/kg) and Fluoxetine (PPD + FLX; 15 mg/kg) respectively from postpartum day 1 and continued for 10 consecutive days. Rats behaviors were evaluated on postpartum day 10 through open field test (OFT) and forced swimming test (FST), followed by biochemical analysis of NLRP3 inflammasome proteins pathway in their brain and determination of neutrophil to lymphocyte ratio (NLR). RESULTS: PPD-induced rats exhibited high immobility and low swimming time in FST with increased inflammatory status; NLR, IL-1ß and NFкB/NLRP3/caspase-1 activity in their hippocampus. However, administration of FO or fluoxetine reversed the aforementioned abnormalities. CONCLUSION: In conclusion, 10 days supplementation with FO ameliorated the depressive-like behaviors in PPD rats by targeting the NFкB/NLRP3/caspase-1/IL-1ß activity. This has shed light on the potential of NLRP3 as a therapeutic target in treatment of PPD in rats.

9.
Metabolites ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436427

RESUMO

Andrographolide (AG) has been shown to have several medicinal and pharmaceutical effects, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, and anti-malarial activities. Moreover, studies to assess the pharmacological effect of AG on the metabolic changes of uninfected red blood cells (uRBCs) have not yet been investigated. This study aims to evaluate the pharmacological effects of AG compared to chloroquine (CQ) on the metabolic variations of uRBCs in vitro using a proton nuclear magnetic resonance (1H-NMR)-based metabolomics approach coupled with multivariate data analysis (MVDA). Forty-one metabolites were successfully identified by 1H-NMR. The results of the unsupervised data analysis principal component analysis (PCA) showed ideal differentiation between AG and CQ. PC1 and PC2 accounted for 71.4% and 17.7% of the explained variation, respectively, with a total variance of 89.10%. Based on S-plot and VIP values, a total of 28 and 32 metabolites were identified as biomarkers in uRBCs-AG and uRBCs-CQ, respectively. In uRBCs treated with AG, ten metabolic pathways were determined to be disturbed, including riboflavin metabolism, d-glutamate and d-glutamine metabolism, phenylalanine metabolism, glutathione metabolism, proline and arginine metabolism, arginine biosynthesis, citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism as well as alanine, aspartate, and glutamate metabolism. In contrast, in CQ-treated uRBCs, nine affected metabolic pathways were determined, which involved the same metabolic pathways for uRBCs-AG, except for glutathione metabolism. These findings suggest an evident relationship between AG and CQ associated with metabolic changes in intact RBCs after being exposed to the treatment. The metabolomics results could allow useful comprehensive insights into the underlying mechanism of the action of AG and CQ on red blood cells. Consequently, the 1H-NMR-based metabolomics approach was successfully utilized to identify the pharmacological effects of AG and CQ on the metabolic variations of uRBCs.

10.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803419

RESUMO

Although death in malaria is attributed to cerebrovascular blockage and anaemia, overwhelming cytokine production can contribute to the severity of the disease. Therefore, mitigation of dysregulated inflammatory signalling may provide further benefit for malaria treatment. Quercetin (3,3',4',5,7-pentahydroxyflavone) is known to inhibit glycogen synthase kinase-3ß (GSK3ß), a potent regulator of both pro- and anti-inflammatory effects. Quercetin is therefore a potential therapeutic to modulate the imbalanced cytokine production during malarial infection. Anti-malarial effects of quercetin were evaluated in murine models of severe and cerebral malaria using Plasmodium berghei NK65 and ANKA strains, respectively. Western blotting and analysis of cytokines were carried out to determine the GSK3ß-mediated cytokine-modulating effects of quercetin in infected animals. Quercetin (25 mg/kg BW) treatment in P. berghei NK65-infected animals resulted in 60.7 ± 2.4% suppression of parasitaemia and significantly decreased serum levels of TNF-α and IFN-γ, whilst levels of IL-10 and IL-4 were elevated significantly. Western analysis revealed that pGSK3ß (Ser9) increased 2.7-fold in the liver of quercetin-treated NK65-infected animals. Treatment of P. berghei ANKA-infected mice with quercetin (15 mg/kg BW) increased (2.3-fold) pGSK3ß (Ser9) in the brains of infected animals. Quercetin is a potential plant-derived therapeutic for malaria on the basis that it can elicit anti-malarial and GSK3ß-mediated cytokine-modulating effects.

11.
Toxicol Res ; 37(2): 221-235, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33868979

RESUMO

Metabolic syndrome is one of the major risk factors that lead to various serious complications like cardiovascular abnormalities, hyperlipidemia and diabetes. Its co-incidence with other organs dysfunction results in further deterioration of the condition or precipitation of other dysfunctions. This study aimed at studying the changes in the hepatic functions after the co-incidence of the high fat or fructose diets induced metabolic syndrome along with the gentamicin induced nephrotoxicity. Briefly, six groups of male Sprague Daley rats (n = 10-12) were fed with different feeding protocols; viz; standard rodent's chow, an experimental high fat or high fructose diets feedings. For each, two groups were allocated that one of them was injected with normal saline and the other with 80 mg/kg/day I.P gentamicin during the last 24 days of the feeding period. The rats were monitored for changes in the metabolic data, glycemic control, lipid profile, renal and hepatic functions, oxidative stress and the inflammatory response. The study revealed stronger hepatic changes in the renal failure groups fed with the high fat diet rather than that in the groups fed with the high fructose diet. Although, the latter experienced a stronger deterioration in the glycemic control. The study suggests that the incidence of the hepatic changes is more linked to the incidence of the deterioration in the lipids profile that was observed after the high fat diet feeding. Overall, the co-incidence of the high fat diet induced metabolic syndrome along with the renal failure constitutes a risk factor for the hepatic dysfunction.

12.
Nanomaterials (Basel) ; 10(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916823

RESUMO

Acyclovir is an antiviral drug used for the treatment of herpes simplex virus infection. Its oral bioavailability is low; therefore, frequent and high doses are prescribed for optimum therapeutic efficacy. Moreover, the current therapeutic regimen of acyclovir is associated with unwarranted adverse effects, hence prompting the need for a suitable drug carrier to overcome these limitations. This study aimed to develop solid lipid nanoparticles (SLNs) as acyclovir carriers and evaluate their in vivo pharmacokinetic parameters to prove the study hypothesis. During the SLN development process, response surface methodology was exploited to optimize the composition of solid lipid and surfactant. Optimum combination of Biogapress Vegetal 297 ATO and Tween 80 was found essential to produce SLNs of 134 nm. The oral bioavailability study showed that acyclovir-loaded SLNs possessed superior oral bioavailability when compared with the commercial acyclovir suspension. The plasma concentration of acyclovir-loaded SLNs was four-fold higher than the commercial suspension. Thus, this investigation presented promising results that the method developed for encapsulation of acyclovir offers potential as an alternative pathway to enhance the drug's bioavailability. In conclusion, this study exhibited the feasibility of SLNs as an oral delivery vehicle for acyclovir and therefore represents a new promising therapeutic concept of acyclovir treatment via a nanoparticulate drug delivery system.

13.
Pathogens ; 9(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708648

RESUMO

The major route for Toxoplasma gondii (T. gondii) infection is through the ingestion of foods contaminated with oocyst from cat faeces. The microscopic detection of T. gondii oocysts in cat faeces is challenging, which contributes to the failure of detecting or differentiating it from other related coccidian parasites. This study aims to detect T. gondii oocysts in cat faeces using two multicopy-target PCR assays and to evaluate their genetic diversity. Cat faecal (200) samples were collected from pet cats (PCs; 100) and free-roaming cats (FRCs; 100) within Klang Valley, Malaysia, and screened for coccidian oocysts by microscopy using Sheather's sucrose floatation. PCR assays were performed on each faecal sample, targeting a B1 gene and a repetitive element (REP) gene to confirm T. gondii oocysts. Additionally, the PCR amplicons from the REP gene were sequenced to further confirm T. gondii-positive samples for phylogenetic analysis. Microscopy detected 7/200 (3.5%) T. gondii-like oocysts, while both the B1 gene and the REP gene detected 17/200 (8.5%) samples positive for T. gondii. All samples that were microscopically positive for T. gondii-like oocysts were also shown to be positive by both B1 and REP genes. The BLAST results sequenced for 16/200 (8.0%) PCR-positive T. gondii samples revealed homology and genetic heterogeneity with T. gondii strains in the GenBank, except for only one positive sample that did not show a result. There was almost perfect agreement (k = 0.145) between the two PCR assays targeting the B1 gene and the REP gene. This is the first report on microscopic, molecular detection and genetic diversity of T. gondii from cat faecal samples in Malaysia. In addition, the sensitivities of either the B1 gene or REP gene multicopy-target PCR assays are suitable for the accurate detection of T. gondii from cat faeces.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32635389

RESUMO

Toxoplasmosis is a disease caused by the protozoan parasite Toxoplasma gondii (T. gondii). Human toxoplasmosis seroprevalence in Malaysia has increased since it was first reported in 1973 as shown in previous reviews of 1991 and 2007. However, over a decade since the last review, comprehensive data on toxoplasmosis in Malaysia is lacking. This work aimed at reviewing articles on toxoplasmosis research in Malaysia in order to identify the research gaps, create public awareness, and efforts made so far and proffer management options on the disease. The present review examines the available published research articles from 2008 to 2018 related to toxoplasmosis research conducted in Malaysia. The articles reviewed were retrieved from nine credible databases such as Web of Science, Google Scholar, ScienceDirect, PubMed, Scopus, Springer, Wiley online library, Ovid, and Cochrane using the keywords; Malaysia, toxoplasmosis, Toxoplasma gondii, toxoplasma encephalitis, seroprevalence, human immunodeficiency virus (HIV) patients, pregnant women, genotype strain, anti-toxoplasma antibodies, felines, and vaccine. The data highlighted seropositive cases from healthy community members in Pangkor Island (59.7%) and among migrant workers (57.4%) at alarming rates, as well as 42.5% in pregnant women. Data on animal seroprevalence were limited and there was no information on cats as the definitive host. Genetic characterization of Toxoplasma gondii from HIV patients; pregnant women, and domestic cats is lacking. This present review on toxoplasmosis is beneficial to researchers, health workers, animal health professionals, and policymakers. Therefore, attention is required to educate and enlighten health workers and the general public about the risk factors associated with T. gondii infection in Malaysia.


Assuntos
Toxoplasmose Animal/epidemiologia , Toxoplasmose/epidemiologia , Idoso de 80 Anos ou mais , Animais , Anticorpos Antiprotozoários , Gatos , Estudos Transversais , Infecções por HIV , Humanos , Malásia/epidemiologia , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Toxoplasma/imunologia
15.
Exp Parasitol ; 216: 107946, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622941

RESUMO

This study was aimed at investigating the involvement of Receptor for Advanced Glycation End Products (RAGE) during malaria infection and the effects of modulating RAGE on the inflammatory cytokines release and histopathological conditions of affected organs in malarial animal model. Plasmodium berghei (P. berghei) ANKA-infected ICR mice were treated with mRAGE/pAb and rmRAGE/Fc Chimera drugs from day 1 to day 4 post infection. Survival and parasitaemia levels were monitored daily. On day 5 post infection, mice were sacrificed, blood were drawn for cytokines analysis and major organs including kidney, spleen, liver, brain and lungs were extracted for histopathological analysis. RAGE levels were increased systemically during malaria infection. Positive correlation between RAGE plasma concentration and parasitaemia development was observed. Treatment with RAGE related drugs did not improve survival of malaria-infected mice. However, significant reduction on the parasitaemia levels were recorded. On the other hand, inhibition and neutralization of RAGE production during the infection significantly increased the plasma levels of interleukin (IL-4, IL-17A, IL-10 and IL-2) and reduced interferon (IFN)-γ secretion. Histopathological analysis revealed that all treated malarial mice showed a better outcome in histological assessment of affected organs (brain, liver, spleen, lungs and kidney). RAGE is involved in malaria pathogenesis and targeting RAGE could be beneficial in malaria infected host in which RAGE inhibition or neutralization increased the release of anti-inflammatory cytokines (IL-10 and IL-4) and reduce pro-inflammatory cytokine (IFNγ) which may help alleviate tissue injury and improve histopathological conditions of affected organs during the infection.


Assuntos
Citocinas/metabolismo , Malária/imunologia , Malária/patologia , Plasmodium berghei/imunologia , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Citocinas/sangue , Rim/parasitologia , Rim/patologia , Modelos Lineares , Fígado/parasitologia , Fígado/patologia , Pulmão/parasitologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Parasitemia/imunologia , Distribuição Aleatória , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/imunologia , Baço/parasitologia , Baço/patologia
16.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575378

RESUMO

Pain is the most common sensation installed in us naturally which plays a vital role in defending us against severe harm. This neurological mechanism pathway has been one of the most complex and comprehensive topics but there has never been an elaborate justification of the types of analgesics that used to reduce the pain sensation through which specific pathways. Of course, there have been some answers to curbing of pain which is a lifesaver in numerous situations-chronic and acute pain conditions alike. This has been explored by scientists using pain-like behavioral study methodologies in non-anesthetized animals since decades ago to characterize the analgesic profile such as centrally or peripherally acting drugs and allowing for the development of analgesics. However, widely the methodology is being practiced such as the tail flick/Hargreaves test and Von Frey/Randall-Selitto tests which are stimulus-evoked nociception studies, and there has rarely been a complete review of all these methodologies, their benefits and its downside coupled with the mechanism of the action that is involved. Thus, this review solely focused on the complete protocol that is being adapted in each behavioral study methods induced by different phlogogenic agents, the different assessment methods used for phasic, tonic and inflammatory pain studies and the proposed mechanism of action underlying each behavioral study methodology for analgesic drug profiling. It is our belief that this review could significantly provide a concise idea and improve our scientists' understanding towards pain management in future research.


Assuntos
Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Animais , Modelos Animais de Doenças , Dor/etiologia , Medição da Dor , Transdução de Sinais
17.
Mediators Inflamm ; 2020: 9560684, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322167

RESUMO

Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.


Assuntos
Microbioma Gastrointestinal/fisiologia , Bactérias/metabolismo , Fungos/metabolismo , Fungos/fisiologia , Microbioma Gastrointestinal/genética , Humanos
18.
Biomolecules ; 10(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059475

RESUMO

Dicranopteris linearis leaf has been reported to exert antinociceptive activity. The present study elucidates the possible mechanisms of antinociception modulated by the methanol extract of D. linearis leaves (MEDL) using various mouse models. The extract (25, 150, and 300 mg/kg) was administered orally to mice for 30 min priot to subjection to the acetic acid-induced writhing-, hot plate- or formalin-test to establish the antinociceptive profile of MEDL. The most effective dose was then used in the elucidation of possible mechanisms of action stage. The extract was also subjected to the phytochemical analyses. The results confirmed that MEDL exerted significant (p < 0.05) antinociceptive activity in those pain models as well as the capsaicin-, glutamate-, bradykinin- and phorbol 12-myristate 13-acetate (PMA)-induced paw licking model. Pretreatment with naloxone (a non-selective opioid antagonist) significantly (p < 0.05) reversed MEDL effect on thermal nociception. Only l-arginine (a nitric oxide (NO) donor) but not N(ω)-nitro-l-arginine methyl ester (l-NAME; a NO inhibitor) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a specific soluble guanylyl cyclase inhibitor) significantly (p < 0.05) modified MEDL effect on the writhing test. Several polyphenolics and volatile antinociceptive compounds were detected in MEDL. In conclusion, MEDL exerted the opioid/NO-mediated antinociceptive activity, thus, justify D. linearis as a potential source for new analgesic agents development.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos/farmacologia , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Traqueófitas/química , Ácido Acético , Administração Oral , Animais , Arginina/química , Avaliação Pré-Clínica de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Hipnóticos e Sedativos/farmacologia , Masculino , Metanol , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Relaxantes Musculares Centrais/farmacologia , Fitoterapia , Acetato de Tetradecanoilforbol
19.
Mini Rev Med Chem ; 20(9): 739-753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31660810

RESUMO

Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.


Assuntos
Antiprotozoários/uso terapêutico , Compostos Fitoquímicos/química , Extratos Vegetais/química , Toxoplasmose/tratamento farmacológico , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Antiprotozoários/química , Antiprotozoários/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Terpenos/química , Terpenos/farmacologia , Terpenos/uso terapêutico , Toxoplasma/efeitos dos fármacos
20.
Malar J ; 18(1): 434, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856836

RESUMO

BACKGROUND: The immune modulating potential of IL-35 in multiple human disorders has been reported. Consequent upon the recognition of inflammatory cytokine activation and its preponderance for mediating pathology during malaria infection, the study aimed to characterize the expression and functional contribution(s) of IL-35 in Plasmodium berghei (strain ANKA) infected mice. METHODS: Plasmodium berghei infection in male ICR mice was used as the rodent model of choice. The time course of IL-35 expression in the systemic circulation and tissues of P. berghei infected mice as well as their healthy control counterparts was assessed by enzyme linked immunosorbent assay and immunohistochemistry respectively. The effect of modulating IL-35 by recombinant IL-35 protein or neutralizing anti-Epstein-Barr virus-induced gene 3 antibody on the cytokine environment during P. berghei infection was assessed by flow cytometry. Furthermore, the influence of modulating IL-35 on histopathological hallmarks of malaria and disease progression was evaluated. RESULTS: Interleukin-35 was significantly up regulated in serum and tissues of P. berghei infected mice and correlated with parasitaemia. Neutralization of IL-35 significantly enhanced the release of IFN-γ, decreased the expression of IL-6 and decreased parasitaemia patency. Neutralization of IL-35 was also associated with a tendency towards increased survival as well as the absence of pathological features associated with malaria infection unlike recombinant IL-35 protein administration which sustained a normal course of infection and unfavourable malaria associated histological outcomes in P. berghei infected mice. CONCLUSION: These results indicate the involvement of IL-35 in P. berghei induced malaria infection. IL-35 neutralization strategies may represent viable therapeutic modalities beneficial for the resolution of malaria infection.


Assuntos
Citocinas/metabolismo , Interleucinas/farmacologia , Malária/imunologia , Plasmodium berghei/efeitos dos fármacos , Transcriptoma , Animais , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...