Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Front Neurosci ; 18: 1329010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362022

RESUMO

The transmission of prions across species is a critical aspect of their dissemination among mammalian hosts, including humans. This process often necessitates strain adaptation. In this study, we sought to investigate the mechanisms underlying prion adaptation while mitigating biases associated with the history of cross-species transmission of natural prion strains. To achieve this, we utilized the synthetic hamster prion strain S05. Propagation of S05 using mouse PrPC in Protein Misfolding Cyclic Amplification did not immediately overcome the species barrier. This finding underscores the involvement of factors beyond disparities in primary protein structures. Subsequently, we performed five serial passages to stabilize the incubation time to disease in mice. The levels of PrPSc increased with each passage, reaching a maximum at the third passage, and declining thereafter. This suggests that only the initial stage of adaptation is primarily driven by an acceleration in PrPSc replication. During the protracted adaptation to a new host, we observed significant alterations in the glycoform ratio and sialylation status of PrPSc N-glycans. These changes support the notion that qualitative modifications in PrPSc contribute to a more rapid disease progression. Furthermore, consistent with the decline in sialylation, a cue for "eat me" signaling, the newly adapted strain exhibited preferential colocalization with microglia. In contrast to PrPSc dynamics, the intensity of microglia activation continued to increase after the third passage in the new host. In summary, our study elucidates that the adaptation of a prion strain to a new host is a multi-step process driven by several factors.

2.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961127

RESUMO

The transmission of prions across species is a critical aspect of their dissemination among mammalian hosts, including humans. This process often necessitates strain adaptation. In this study, we sought to investigate the mechanisms underlying prion adaptation while mitigating biases associated with the history of cross-species transmission of natural prion strains. To achieve this, we utilized the synthetic hamster prion strain S05. Propagation of S05 using mouse PrPC in Protein Misfolding Cyclic Amplification did not immediately overcome the species barrier. This finding underscores the involvement of factors beyond disparities in primary protein structures. Subsequently, we performed five serial passages to stabilize the incubation time to disease in mice. The levels of PrPSc increased with each passage, reaching a maximum at the third passage, and declining thereafter. This suggests that only the initial stage of adaptation is primarily driven by an acceleration in PrPSc replication. During the protracted adaptation to a new host, we observed significant alterations in the glycoform ratio and sialylation status of PrPSc N-glycans. These changes support the notion that qualitative modifications in PrPSc contribute to a more rapid disease progression. Furthermore, consistent with the decline in sialylation, a cue for "eat me" signaling, the newly adapted strain exhibited preferential colocalization with microglia. In contrast to PrPSc dynamics, the intensity of microglia activation continued to increase after the third passage in the new host. In summary, our study elucidates that the adaptation of a prion strain to a new host is a multi-step process driven by several factors.

3.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681904

RESUMO

The transformation of astrocytes into reactive states constitutes a biological response of the central nervous system under a variety of pathological insults. Astrocytes display diverse homeostatic identities that are developmentally predetermined and regionally specified. Upon transformation into reactive states associated with neurodegenerative diseases and other neurological disorders, astrocytes acquire diverse reactive phenotypes. However, it is not clear whether their reactive phenotypes are dictated by region-specific homeostatic identity or by the nature of an insult. To address this question, region-specific gene expression profiling was performed for four brain regions (cortex, hippocampus, thalamus, and hypothalamus) in mice using a custom NanoString panel consisting of selected sets of genes associated with astrocyte functions and their reactivity for five conditions: prion disease, traumatic brain injury, brain ischemia, 5XFAD Alzheimer's disease model and normal aging. Upon transformation into reactive states, genes that are predominantly associated with astrocytes were found to respond to insults in a region-specific manner. Regardless of the nature of the insult or the insult-specificity of astrocyte response, strong correlations between undirected GSA (gene set analysis) scores reporting on astrocyte reactivity and on their homeostatic functions were observed within each individual brain region. The insult-specific gene expression signatures did not separate well from each other and instead partially overlapped, forming continuums. The current study demonstrates that region-specific homeostatic identities of astrocytes are important for defining their response to pathological insults. Within region-specific populations, reactive astrocytes show continuums of gene expression signatures, partially overlapping between individual insults.


Assuntos
Lesões Encefálicas Traumáticas , Isquemia Encefálica , Animais , Camundongos , Astrócitos , Sistema Nervoso Central , Envelhecimento
4.
Neurobiol Dis ; 185: 106264, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597815

RESUMO

BACKGROUND: Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. RESULTS: In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. CONCLUSIONS: To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Barreira Hematoencefálica , Astrócitos , Células Endoteliais , Claudina-5 , Interleucina-6 , Ocludina
5.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993690

RESUMO

Background: Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. Results: In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. Conclusions: To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.

6.
Brain Pathol ; 33(1): e13116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064300

RESUMO

The possibility that the etiology of late onset Alzheimer's disease is linked to viral infections of the CNS has been actively debated in recent years. According to the antiviral protection hypothesis, viral pathogens trigger aggregation of Aß peptides that are produced as a defense mechanism in response to infection to entrap and neutralize pathogens. To test the causative relationship between viral infection and Aß aggregation, the current study examined whether Aß plaques protect the mouse brain against Herpes Simplex Virus 1 (HSV-1) infection introduced via a physiological route and whether HSV-1 infection triggers formation of Aß plaques in a mouse model of late-onset AD that does not develop Aß pathology spontaneously. In aged 5XFAD mice infected via eye scarification, high density of Aß aggregates did not improve survival time or rate when compared with wild type controls. In 5XFADs, viral replication sites were found in brain areas with a high density of extracellular Aß deposits, however, no association between HSV-1 and Aß aggregates could be found. To test whether HSV-1 triggers Aß aggregation in a mouse model that lacks spontaneous Aß pathology, 13-month-old hAß/APOE4/Trem2*R47H mice were infected with HSV-1 via eye scarification with the McKrae HSV-1 strain, intracranial inoculation with McKrae, intracranial inoculation after priming with LPS for 6 weeks, or intracranial inoculation with high doses of McKrae or 17syn + strains that represent different degrees of neurovirulence. No signs of Aß aggregation were found in any of the experimental groups. Instead, extensive infiltration of peripheral leukocytes was observed during the acute stage of HSV-1 infection, and phagocytic activity of myeloid cells was identified as the primary defense mechanism against HSV-1. The current results argue against a direct causative relationship between HSV-1 infection and Aß pathology.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Camundongos , Animais , Doença de Alzheimer/patologia , Herpesvirus Humano 1/metabolismo , Peptídeos beta-Amiloides/metabolismo , Herpes Simples/complicações , Encéfalo/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Glicoproteínas de Membrana , Receptores Imunológicos
7.
Cell Tissue Res ; 392(1): 201-214, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088180

RESUMO

Mammalian prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of the prion protein or PrPC. PrPC and PrPSc are posttranslationally modified with N-linked glycans, which are sialylated at the terminal positions. More than 30 years have passed since the first characterization of the composition and structural diversity of N-linked glycans associated with the prion protein, yet the role of carbohydrate groups that constitute N-glycans and, in particular, their terminal sialic acid residues in prion disease pathogenesis remains poorly understood. A number of recent studies shed a light on the role of sialylation in the biology of prion diseases. This review article discusses several mechanisms by which terminal sialylation dictates the spread of PrPSc across brain regions and the outcomes of prion infection in an organism. In particular, relationships between the sialylation status of PrPSc and important strain-specific features including lymphotropism, neurotropism, and neuroinflammation are discussed. Moreover, emerging evidence pointing out the roles of sialic acid residues in prion replication, cross-species transmission, strain competition, and strain adaptation are reviewed. A hypothesis according to which selective, strain-specified recruitment of PrPC sialoglycoforms dictates unique strain-specific disease phenotypes is examined. Finally, the current article proposes that prion strains evolve as a result of a delicate balance between recruiting highly sialylated glycoforms to avoid an "eat-me" response by glia and limiting heavily sialylated glycoforms for enabling rapid prion replication.


Assuntos
Doenças Priônicas , Príons , Animais , Príons/metabolismo , Proteínas Priônicas/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Polissacarídeos/metabolismo , Mamíferos/metabolismo
8.
Front Mol Biosci ; 9: 1058602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452458

RESUMO

Prion diseases are a group of fatal neurodegenerative diseases caused by misfolding of the normal cellular form of the prion protein or PrPC, into a disease-associated self-replicating state or PrPSc. PrPC and PrPSc are posttranslationally modified with N-linked glycans, in which the terminal positions occupied by sialic acids residues are attached to galactose predominantly via α2-6 linkages. The sialylation status of PrPSc is an important determinant of prion disease pathogenesis, as it dictates the rate of prion replication and controls the fate of prions in an organism. The current study tests whether a knockout of ST6Gal1, one of the two mammalian sialyltransferases that catalyze the sialylation of glycans via α2-6 linkages, reduces the sialylation status of PrPSc and alters prion disease pathogenesis. We found that a global knockout of ST6Gal1 in mice significantly reduces the α2-6 sialylation of the brain parenchyma, as determined by staining with Sambucus Nigra agglutinin. However, the sialylation of PrPSc remained stable and the incubation time to disease increased only modestly in ST6Gal1 knockout mice (ST6Gal1-KO). A lack of significant changes in the PrPSc sialylation status and prion pathogenesis is attributed to the redundancy in sialylation and, in particular, the plausible involvement of a second member of the sialyltransferase family that sialylate via α2-6 linkages, ST6Gal2.

9.
Cells ; 10(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359897

RESUMO

Phagocytosis is one of the most important physiological functions of the glia directed at maintaining a healthy, homeostatic environment in the brain. Under a homeostatic environment, the phagocytic activities of astrocytes and microglia are tightly coordinated in time and space. In neurodegenerative diseases, both microglia and astrocytes contribute to neuroinflammation and disease pathogenesis, however, whether their phagocytic activities are up- or downregulated in reactive states is not known. To address this question, this current study isolated microglia and astrocytes from C57BL/6J mice infected with prions and tested their phagocytic activities in live-cell imaging assays that used synaptosomes and myelin debris as substrates. The phagocytic uptake by the reactive microglia was found to be significantly upregulated, whereas that of the reactive astrocytes was strongly downregulated. The up- and downregulation of phagocytosis by the two cell types were observed irrespective of whether disease-associated synaptosomes, normal synaptosomes, or myelin debris were used in the assays, indicating that dysregulations are dictated by cell reactive states, not substrates. Analysis of gene expression confirmed dysregulation of phagocytic functions in both cell types. Immunostaining of animal brains infected with prions revealed that at the terminal stage of disease, neuronal cell bodies were subject to engulfment by reactive microglia. This study suggests that imbalance in the phagocytic activities of the reactive microglia and astrocytes, which are dysregulated in opposite directions, is likely to lead to excessive microglia-mediated neuronal death on the one hand, and the inability of astrocytes to clear cell debris on the other hand, contributing to the neurotoxic effects of glia as a whole.


Assuntos
Astrócitos/patologia , Microglia/patologia , Fagocitose , Doenças Priônicas/patologia , Animais , Encéfalo/patologia , Células Cultivadas , Regulação para Baixo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Neurônios/patologia , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Regulação para Cima
10.
Prion ; 15(1): 87-93, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34057026

RESUMO

Transformation of astrocytes into reactive states is considered one of the major pathological hallmarks of prion and other neurodegenerative diseases. Recent years witnessed a growing appreciation of the view that reactive astrocytes are intimately involved in chronic neurodegeneration; however, little is known about their role in disease pathogenesis. The current article reviews the progress of the last few years and critically discusses controversial questions of whether reactive astrocytes associated with prion diseases are neurotoxic or neuroprotective and whether bidirectional A1-A2 model is applicable for describing polarization of astrocytes. Moreover, other important topics, including reversibility of a transition to a reactive state, along with the role of microglia and other stimuli in triggering astrocyte activation are reviewed. Defining the role of reactive astrocytes in pathogenesis of neurodegenerative diseases will open unrealized opportunities for developing new therapeutic approaches against prion and other neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Príons , Astrócitos , Humanos , Microglia
11.
J Biol Chem ; 297(1): 100845, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34052228

RESUMO

Alzheimer's disease (AD) is a devastating fatal neurodegenerative disease. An alternative to the amyloid cascade hypothesis is that a viral infection is key to the etiology of late-onset AD, with ß-amyloid (Aß) peptides playing a protective role. In the current study, young 5XFAD mice that overexpress mutant human amyloid precursor protein with the Swedish, Florida, and London familial AD mutations were infected with one of two strains of herpes simplex virus 1 (HSV-1), 17syn+ and McKrae, at three different doses. Contrary to previous work, 5XFAD genotype failed to protect mice against HSV-1 infection. The region- and cell-specific tropisms of HSV-1 were not affected by the 5XFAD genotype, indicating that host-pathogen interactions were not altered. Seven- to ten-month-old 5XFAD animals in which extracellular Aß aggregates were abundant showed slightly better survival rate relative to their wild-type (WT) littermates, although the difference was not statistically significant. In these 5XFAD mice, HSV-1 replication centers were partially excluded from the brain areas with high densities of Aß aggregates. Aß aggregates were free of HSV-1 viral particles, and the limited viral invasion to areas with a high density of Aß aggregates was attributed to phagocytic activity of reactive microglia. In the oldest mice (12-15 months old), the survival rate did not differ between 5XFAD and WT littermates. While the current study questions the antiviral role of Aß, it neither supports nor refutes the viral etiology hypothesis of late-onset AD.


Assuntos
Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Interações Hospedeiro-Patógeno/genética , Viroses/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/virologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Humanos , Camundongos , Camundongos Transgênicos , Microglia/patologia , Microglia/virologia , Presenilina-1/genética , Viroses/complicações , Viroses/patologia , Viroses/virologia , Replicação Viral/genética
12.
Acta Neuropathol Commun ; 9(1): 87, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980286

RESUMO

In neurodegenerative diseases including Alzheimer's, Parkinson's and prion diseases, astrocytes acquire disease-associated reactive phenotypes. With growing appreciation of their role in chronic neurodegeneration, the questions whether astrocytes lose their ability to perform homeostatic functions in the reactive states and whether the reactive phenotypes are neurotoxic or neuroprotective remain unsettled. The current work examined region-specific changes in expression of genes, which report on astrocyte physiological functions and their reactive states, in C57Black/6J mice challenged with four prion strains via two inoculation routes. Unexpectedly, strong reverse correlation between the incubation time to the diseases and the degree of astrocyte activation along with disturbance in functional pathways was observed. The animal groups with the most severe astrocyte response and degree of activation showed the most rapid disease progression. The degree of activation tightly intertwined with the global transformation of the homeostatic state, characterized by disturbances in multiple gene sets responsible for normal physiological functions producing a neurotoxic, reactive phenotype as a net result. The neurotoxic reactive phenotype exhibited a universal gene signature regardless of the prion strain. The current work suggests that the degree of astrocyte activation along with the disturbance in their physiological pathways contribute to the faster progression of disease and perhaps even drive prion pathogenesis.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Transcriptoma/fisiologia , Animais , Encéfalo/patologia , Feminino , Previsões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Priônicas/genética , Fatores de Tempo
13.
Acta Neuropathol Commun ; 9(1): 22, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546775

RESUMO

Under normal conditions, astrocytes perform a number of important physiological functions centered around neuronal support and synapse maintenance. In neurodegenerative diseases including Alzheimer's, Parkinson's and prion diseases, astrocytes acquire reactive phenotypes, which are sustained throughout the disease progression. It is not known whether in the reactive states associated with prion diseases, astrocytes lose their ability to perform physiological functions and whether the reactive states are neurotoxic or, on the contrary, neuroprotective. The current work addresses these questions by testing the effects of reactive astrocytes isolated from prion-infected C57BL/6J mice on primary neuronal cultures. We found that astrocytes isolated at the clinical stage of the disease exhibited reactive, pro-inflammatory phenotype, which also showed downregulation of genes involved in neurogenic and synaptogenic functions. In astrocyte-neuron co-cultures, astrocytes from prion-infected animals impaired neuronal growth, dendritic spine development and synapse maturation. Toward examining the role of factors secreted by reactive astrocytes, astrocyte-conditioned media was found to have detrimental effects on neuronal viability and synaptogenic functions via impairing synapse integrity, and by reducing spine size and density. Reactive microglia isolated from prion-infected animals were found to induce phenotypic changes in primary astrocytes reminiscent to those observed in prion-infected mice. In particular, astrocytes cultured with reactive microglia-conditioned media displayed hypertrophic morphology and a downregulation of genes involved in neurogenic and synaptogenic functions. In summary, the current study provided experimental support toward the non-cell autonomous mechanisms behind neurotoxicity in prion diseases and demonstrated that the astrocyte reactive phenotype associated with prion diseases is synaptotoxic.


Assuntos
Astrócitos/patologia , Infecções do Sistema Nervoso Central/patologia , Infecções do Sistema Nervoso Central/fisiopatologia , Neurônios/patologia , Doenças Priônicas/fisiopatologia , Príons/patogenicidade , Animais , Astrócitos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Príons/metabolismo , Sinapses/metabolismo , Sinapses/patologia
14.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477465

RESUMO

A number of neurodegenerative diseases including prion diseases, tauopathies and synucleinopathies exhibit multiple clinical phenotypes. A diversity of clinical phenotypes has been attributed to the ability of amyloidogenic proteins associated with a particular disease to acquire multiple, conformationally distinct, self-replicating states referred to as strains. Structural diversity of strains formed by tau, α-synuclein or prion proteins has been well documented. However, the question how different strains formed by the same protein elicit different clinical phenotypes remains poorly understood. The current article reviews emerging evidence suggesting that posttranslational modifications are important players in defining strain-specific structures and disease phenotypes. This article put forward a new hypothesis referred to as substrate selection hypothesis, according to which individual strains selectively recruit protein isoforms with a subset of posttranslational modifications that fit into strain-specific structures. Moreover, it is proposed that as a result of selective recruitment, strain-specific patterns of posttranslational modifications are formed, giving rise to unique disease phenotypes. Future studies should define whether cell-, region- and age-specific differences in metabolism of posttranslational modifications play a causative role in dictating strain identity and structural diversity of strains of sporadic origin.


Assuntos
Doenças Neurodegenerativas/genética , Proteínas Priônicas/ultraestrutura , alfa-Sinucleína/ultraestrutura , Proteínas tau/ultraestrutura , Humanos , Doenças Neurodegenerativas/patologia , Fenótipo , Proteínas Priônicas/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética , Especificidade por Substrato , Sinucleinopatias/genética , Sinucleinopatias/patologia , Tauopatias/genética , Tauopatias/patologia , alfa-Sinucleína/genética , Proteínas tau/genética
15.
Prog Mol Biol Transl Sci ; 175: 31-52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32958238

RESUMO

Mammalian prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein or PrPC. Sialylation of the prion protein, a terminal modification of N-linked glycans, was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis is not well understood. This chapter summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss recent data suggesting that sialylation of PrPSc N-linked glycans determines the fate of prion infection in an organism and control prion lymphotropism. Second, emerging evidence pointing out at the role N-glycans in neuroinflammation are discussed. Thirds, this chapter reviews a mechanism postulating that sialylated N-linked glycans are important players in defining strain-specific structures. A new hypothesis according to which individual strain-specific PrPSc structures govern selection of PrPC sialoglycoforms is discussed. Finally, this chapter explain how N-glycan sialylation control the prion replication and strain interference. In summary, comprehensive review of our knowledge on N-linked glycans and their sialylation provided in this chapter helps to answer important questions of prion biology that have been puzzling for years.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Doenças Priônicas/metabolismo , Príons/química , Príons/metabolismo , Animais , Humanos , Inflamação/patologia , Modelos Moleculares , Doenças Priônicas/transmissão , Príons/patogenicidade
16.
J Clin Invest ; 130(8): 4382-4395, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32484800

RESUMO

Posttranslational modifications are a common feature of proteins associated with neurodegenerative diseases including prion protein (PrPC), tau, and α-synuclein. Alternative self-propagating protein states or strains give rise to different disease phenotypes and display strain-specific subsets of posttranslational modifications. The relationships between strain-specific structure, posttranslational modifications, and disease phenotype are poorly understood. We previously reported that among hundreds of PrPC sialoglycoforms expressed by a cell, individual prion strains recruited PrPC molecules selectively, according to the sialylation status of their N-linked glycans. Here we report that transmission of a prion strain to a new host is accompanied by a dramatic shift in the selectivity of recruitment of PrPC sialoglycoforms, giving rise to a self-propagating scrapie isoform (PrPSc) with a unique sialoglycoform signature and disease phenotype. The newly emerged strain has the shortest incubation time to disease and is characterized by colocalization of PrPSc with microglia and a very profound proinflammatory response, features that are linked to a unique sialoglycoform composition of PrPSc. The current work provides experimental support for the hypothesis that strain-specific patterns of PrPSc sialoglycoforms formed as a result of selective recruitment dictate strain-specific disease phenotypes. This work suggests a causative relationship between a strain-specific structure, posttranslational modifications, and disease phenotype.


Assuntos
Microglia/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Glicosilação , Mesocricetus , Camundongos , Microglia/patologia
17.
Neurobiol Dis ; 137: 104783, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001329

RESUMO

Chronic neuroinflammation is recognized as a major neuropathological hallmark in a broad spectrum of neurodegenerative diseases including Alzheimer's, Parkinson's, Frontal Temporal Dementia, Amyotrophic Lateral Sclerosis, and prion diseases. Both microglia and astrocytes exhibit region-specific homeostatic transcriptional identities, which under chronic neurodegeneration, transform into reactive phenotypes in a region- and disease-specific manner. Little is known about region-specific identity of glia in prion diseases. The current study was designed to determine whether the region-specific homeostatic signature of glia changes with the progression of prion diseases, and whether these changes occur in a region-dependent or universal manner. Also of interest was whether different prion strains give rise to different reactive phenotypes. To answer these questions, we analyzed gene expression in the thalamus, cortex, hypothalamus and hippocampus of mice infected with 22L and ME7 prion strains using a Nanostring Neuroinflammation panel at the subclinical, early clinical and advanced stages of the disease. We found that at the preclinical stage of the disease, the region-specific homeostatic identities were preserved. However, with the appearance of clinical signs, the region-specific signatures were partially lost and replaced with a neuroinflammation signature. While the same sets of genes were activated by both prion strains, the timing of neuroinflammation and the degree of activation in different brain regions was strain-specific. Changes in astrocyte function scored at the top of the activated pathways. Moreover, clustering analysis suggested that the astrocyte function pathway responded to prion infection prior to the Activated Microglia or Neuron and Neurotransmission pathways. The current work established neuroinflammation gene expression signature associated with prion diseases. Our results illustrate that with the disease progression, the region-specific homeostatic transcriptome signatures are replaced by the region-independent neuroinflammation signature, which is common for prion strains with different cell tropism. The prion-associated neuroinflammation signature identified in the current study overlapped only partially with the microglia degenerative phenotype and the disease-associated microglia phenotype reported for animal models of other neurodegenerative diseases.


Assuntos
Astrócitos/metabolismo , Inflamação/metabolismo , Neuroglia/metabolismo , Doenças Priônicas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo
18.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012886

RESUMO

Mammalian prions are unconventional infectious agents that invade and replicate in an organism by recruiting a normal form of a prion protein (PrPC) and converting it into misfolded, disease-associated state referred to as PrPSc. PrPC is posttranslationally modified with two N-linked glycans. Prion strains replicate by selecting substrates from a large pool of PrPC sialoglycoforms expressed by a host. Brain regions have different vulnerability to prion infection, however, molecular mechanisms underlying selective vulnerability is not well understood. Toward addressing this question, the current study looked into a possibility that sialylation of PrPSc might be involved in defining selective vulnerability of brain regions. The current work found that in 22L -infected animals, PrPSc is indeed sialylated in a region dependent manner. PrPSc in hippocampus and cortex was more sialylated than PrPSc from thalamus and stem. Similar trends were also observed in brain materials from RML- and ME7-infected animals. The current study established that PrPSc sialylation status is indeed region-specific. Together with previous studies demonstrating that low sialylation status accelerates prion replication, this work suggests that high vulnerability of certain brain region to prion infection could be attributed to their low sialylation status.


Assuntos
Encéfalo/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/patologia , Feminino , Masculino , Camundongos , Doenças Priônicas/patologia
19.
Front Neurosci ; 13: 1048, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649496

RESUMO

Chronic neuroinflammation involves reactive microgliosis and astrogliosis, and is regarded as a common pathological hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, ALS and prion diseases. Reactive astrogliosis, routinely observed immunohistochemically as an increase in glial fibrillary acidic protein (GFAP) signal, is a well-documented feature of chronic neuroinflammation associated with neurodegenerative diseases. Recent studies on single-cell transcriptional profiling of a mouse brain revealed that, under normal conditions, several distinct subtypes of astrocytes with regionally specialized distribution exist. However, it remains unclear whether astrocytic response to pro-inflammatory pathological conditions is uniform across whole brain or is region-specific. The current study compares the response of microglia and astrocytes to prions in mice infected with 22L mouse-adapted prion strain. While the intensity of reactive microgliosis correlated well with the extent of PrPSc deposition, reactive astrogliosis displayed a different, region-specific pattern. In particular, the thalamus and stratum oriens of hippocampus, which are both affected by 22L prions, displayed strikingly different response of astrocytes to PrPSc. Astrocytes in stratum oriens of hippocampus responded to accumulation of PrPSc with visible hypertrophy and increased GFAP, while in the thalamus, despite stronger PrPSc signal, the increase of GFAP was milder than in hippocampus, and the change in astrocyte morphology was less pronounced. The current study suggests that astrocyte response to prion infection is heterogeneous and, in part, defined by brain region. Moreover, the current work emphasizes the needs for elucidating region-specific changes in functional states of astrocytes and exploring the impact of these changes to chronic neurodegeneration.

20.
Prion ; 13(1): 46-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30646817

RESUMO

Understanding the structure of PrPSc is without doubt a sine qua non to understand not only PrPSc propagation, but also critical features of that process such as the strain phenomenon and transmission barriers. While elucidation of the PrPSc structure has been full of difficulties, we now have a large amount of structural information that allows us to begin to understand it. This commentary article summarizes a round table that took place within the Prion 2018 meeting held in Santiago de Compostela to discuss the state of the art in this matter. Two alternative models of PrPSc exist: the PIRIBS and the 4-rung ß-solenoid models. Both of them have relevant features. The 4-rung ß-solenoid model agrees with experimental constraints of brain derived PrPSc obtained from cryo-EM and X-ray fiber diffraction studies. Furthermore, it allows facile accommodation of the bulky glycans that decorate brain-derived PrPSc. On the other hand, the infectious PrP23-144 amyloid exhibits a PIRIBS architecture. Perhaps, both types of structure co-exist.


Assuntos
Proteínas PrPSc/metabolismo , Amiloide/metabolismo , Animais , Glicosilação , Humanos , Camundongos , Modelos Biológicos , Modelos Moleculares , Proteínas PrPSc/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...