Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 41(12): 2136-2153.e13, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995682

RESUMO

CCS1477 (inobrodib) is a potent, selective EP300/CBP bromodomain inhibitor which induces cell-cycle arrest and differentiation in hematologic malignancy model systems. In myeloid leukemia cells, it promotes rapid eviction of EP300/CBP from an enhancer subset marked by strong MYB occupancy and high H3K27 acetylation, with downregulation of the subordinate oncogenic network and redistribution to sites close to differentiation genes. In myeloma cells, CCS1477 induces eviction of EP300/CBP from FGFR3, the target of the common (4; 14) translocation, with redistribution away from IRF4-occupied sites to TCF3/E2A-occupied sites. In a subset of patients with relapsed or refractory disease, CCS1477 monotherapy induces differentiation responses in AML and objective responses in heavily pre-treated multiple myeloma. In vivo preclinical combination studies reveal synergistic responses to treatment with standard-of-care agents. Thus, CCS1477 exhibits encouraging preclinical and early-phase clinical activity by disrupting recruitment of EP300/CBP to enhancer networks occupied by critical transcription factors.


Assuntos
Neoplasias Hematológicas , Proteínas Nucleares , Humanos , Linhagem Celular Tumoral , Fatores de Transcrição , Domínios Proteicos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Proteína p300 Associada a E1A
2.
Oncogene ; 41(44): 4841-4854, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171271

RESUMO

Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.


Assuntos
Histona Desmetilases , Leucemia Mieloide Aguda , Humanos , Diferenciação Celular/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
BMC Cancer ; 21(1): 1153, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711181

RESUMO

BACKGROUND: Disease relapse remains common following treatment of acute myeloid leukemia (AML) and is due to chemoresistance of leukemia cells with disease repopulating potential. To date, attempts to define the characteristics of in vivo resistant blasts have focused on comparisons between leukemic cells at presentation and relapse. However, further treatment responses are often seen following relapse, suggesting that most blasts remain chemosensitive. We sought to characterise in vivo chemoresistant blasts by studying the transcriptional and genetic features of blasts from before and shortly after induction chemotherapy using paired samples from six patients with primary refractory AML. METHODS: Leukemic blasts were isolated by fluorescence-activated cell sorting. Fluorescence in situ hybridization (FISH), targeted genetic sequencing and detailed immunophenotypic analysis were used to confirm that sorted cells were leukemic. Sorted blasts were subjected to RNA sequencing. Lentiviral vectors expressing short hairpin RNAs were used to assess the effect of FOXM1 knockdown on colony forming capacity, proliferative capacity and apoptosis in cell lines, primary AML cells and CD34+ cells from healthy donors. RESULTS: Molecular genetic analysis revealed early clonal selection occurring after induction chemotherapy. Immunophenotypic characterisation found leukemia-associated immunophenotypes in all cases that persisted following treatment. Despite the genetic heterogeneity of the leukemias studied, transcriptional analysis found concerted changes in gene expression in resistant blasts. Remarkably, the gene expression signature suggested that post-chemotherapy blasts were more proliferative than those at presentation. Resistant blasts also appeared less differentiated and expressed leukemia stem cell (LSC) maintenance genes. However, the proportion of immunophenotypically defined LSCs appeared to decrease following treatment, with implications for the targeting of these cells on the basis of cell surface antigen expression. The refractory gene signature was highly enriched with targets of the transcription factor FOXM1. shRNA knockdown experiments demonstrated that the viability of primary AML cells, but not normal CD34+ cells, depended on FOXM1 expression. CONCLUSIONS: We found that chemorefractory blasts from leukemias with varied genetic backgrounds expressed a common transcriptional program. In contrast to the notion that LSC quiescence confers resistance to chemotherapy we find that refractory blasts are both actively proliferating and enriched with LSC maintenance genes. Using primary patient material from a relevant clinical context we also provide further support for the role of FOXM1 in chemotherapy resistance, proliferation and stem cell function in AML.


Assuntos
Crise Blástica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Forkhead Box M1/genética , Quimioterapia de Indução , Leucemia Mieloide Aguda/genética , Adolescente , Adulto , Idoso , Apoptose/genética , Crise Blástica/tratamento farmacológico , Crise Blástica/metabolismo , Crise Blástica/patologia , Diferenciação Celular , Proliferação de Células/genética , Sobrevivência Celular , Feminino , Citometria de Fluxo , Proteína Forkhead Box M1/metabolismo , Inativação Gênica , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/metabolismo , Recidiva , Ensaio Tumoral de Célula-Tronco , Adulto Jovem
4.
BMC Cancer ; 20(1): 1075, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167906

RESUMO

BACKGROUND: Resistance to chemotherapy is the most common cause of treatment failure in acute myeloid leukemia (AML) and the drug efflux pump ABCB1 is a critical mediator. Recent studies have identified promoter translocations as common drivers of high ABCB1 expression in recurrent, chemotherapy-treated high-grade serous ovarian cancer (HGSC) and breast cancer. These fusions place ABCB1 under the control of a strong promoter while leaving its open reading frame intact. The mechanisms controlling high ABCB1 expression in AML are largely unknown. We therefore established an experimental system and analysis pipeline to determine whether promoter translocations account for high ABCB1 expression in cases of relapsed human AML. METHODS: The human AML cell line THP-1 was used to create a model of chemotherapy resistance in which ABCB1 expression was driven by a promoter fusion. The THP-1 model was used to establish a targeted nanopore long-read sequencing approach that was then applied to cases of ABCB1high HGSC and AML. H3K27Ac ChIP sequencing was used to assess the activity of native promoters in cases of ABCB1high AML. RESULTS: Prolonged in vitro daunorubicin exposure induced activating ABCB1 promoter translocations in human THP-1 AML cells, similar to those recently described in recurrent high-grade serous ovarian and breast cancers. Targeted nanopore sequencing proved an efficient method for identifying ABCB1 structural variants in THP-1 AML cells and HGSC; the promoter translocations identified in HGSC were both previously described and novel. In contrast, activating ABCB1 promoter translocations were not identified in ABCB1high AML; instead H3K27Ac ChIP sequencing demonstrated active native promoters in all cases studied. CONCLUSIONS: Despite frequent high level expression of ABCB1 in relapsed primary AML we found no evidence of ABCB1 translocations and instead confirmed high-level activity of native ABCB1 promoters, consistent with endogenous regulation.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Sequenciamento por Nanoporos/métodos , Regiões Promotoras Genéticas , Translocação Genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Humanos , Prognóstico , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...