Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36290618

RESUMO

Exposure to high doses of radiation, accidental or therapeutic, often results in gastrointestinal (GI) injury. To date, there are no therapies available to mitigate GI injury after radiation exposure. Gamma-tocotrienol (GT3) is a promising radioprotector under investigation in nonhuman primates (NHP). We have shown that GT3 has radioprotective function in intestinal epithelial and crypt cells in NHPs exposed to 12 Gy total-body irradiation (TBI). Here, we determined GT3 potential in accelerating the GI recovery in partial-body irradiated (PBI) NHPs using X-rays, sparing 5% bone marrow. Sixteen rhesus macaques were treated with either vehicle or GT3 24 h prior to 12 Gy PBI. Structural injuries and crypt survival were examined in proximal jejunum on days 4 and 7. Plasma citrulline was assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Crypt cell proliferation and apoptotic cell death were evaluated using Ki-67 and TUNEL staining. PBI significantly decreased mucosal surface area and reduced villous height. Interestingly, GT3 increased crypt survival and enhanced stem cell proliferation at day 4; however, the effects seemed to be minimized by day 7. GT3 did not ameliorate a radiation-induced decrease in citrulline levels. These data suggest that X-rays induce severe intestinal injury post-PBI and that GT3 has minimal radioprotective effect in this novel model.

2.
ACS Nano ; 16(8): 12061-12072, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35868016

RESUMO

Carbon-based nanomaterials (CBNs) are often used for potential agricultural applications. Since CBNs applied to plants can easily enter plant organs and reach the human diet, the consequences of the introduction of CBNs into the food chain need to be investigated. We created a platform for a comprehensive investigation of the possible health risks of multiwalled carbon nanotubes (CNTs) accumulated in the organs of exposed tomato plants. Quantification and visualization of CNTs absorbed by plant organs were determined by microwave-induced heating (MIH) and radio frequency (RF) heating methods. Feeding mice with CNT-contaminated tomatoes showed an absence of toxicity for all assessed animal organs. The amount of CNTs accumulated inside the organs of mice fed with CNT-containing fruits was assessed by an RF heating technique and was found to be negligible. Our work provides the experimental evidence that the amount of CNTs accumulated in plant organs as a result of nanofertilization is not sufficient to induce toxicity in mice.


Assuntos
Nanotubos de Carbono , Solanum lycopersicum , Humanos , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Plantas , Agricultura , Medição de Risco
3.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563033

RESUMO

The gastrointestinal (GI) system is highly susceptible to irradiation. Currently, there is no Food and Drug Administration (FDA)-approved medical countermeasures for GI radiation injury. The vitamin E analog gamma-tocotrienol (GT3) is a promising radioprotector in mice and nonhuman primates (NHP). We evaluated GT3-mediated GI recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques were divided into two groups; eight received vehicle and eight GT3 24 h prior to 12 Gy TBI. Proximal jejunum was assessed for structural injuries and crypt survival on day 4 and 7. Apoptotic cell death and crypt cell proliferation were assessed with TUNEL and Ki-67 immunostaining. Irradiation induced significant shortening of the villi and reduced mucosal surface area. GT3 induced an increase in crypt depth at day 7, suggesting that more stem cells survived and proliferated after irradiation. GT3 did not influence crypt survival after irradiation. GT3 treatment caused a significant decline in TUNEL-positive cells at both day 4 (p < 0.03) and 7 (p < 0.0003). Importantly, GT3 induced a significant increase in Ki-67-positive cells at day 7 (p < 0.05). These data suggest that GT3 has radioprotective function in intestinal epithelial and crypt cells. GT3 should be further explored as a prophylactic medical countermeasure for radiation-induced GI injury.


Assuntos
Síndrome Aguda da Radiação , Cromanos , Protetores contra Radiação , Vitamina E , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Animais , Cromanos/uso terapêutico , Modelos Animais de Doenças , Intestinos/patologia , Intestinos/efeitos da radiação , Antígeno Ki-67 , Macaca mulatta , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Vitamina E/análogos & derivados , Vitamina E/uso terapêutico
4.
R Soc Open Sci ; 8(8): 210395, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430045

RESUMO

The discovery of chimeric anti-melanoma agents is reported. These molecules are potent growth suppressors of melanoma cells in vitro with growth inhibition of 50% (GI50) values as low as 1.32 µM. Compounds were more toxic to melanoma cells in vitro than commonly used anti-melanoma agent dacarbazine as measured by TUNEL assay. They induced both caspase-independent apoptosis evident by colocalization of TUNEL with endonuclease G (EndoG) and caspase-mediated apoptosis measured by colocalization of TUNEL with caspase-activated DNase (CAD). In addition, compounds 3 and 5 strongly induced oxidative injury to melanoma cells as measured by TUNEL colocalization with heme oxygenase-1 (HO1). Dacarbazine induced only caspase-independent apoptosis, which may explain why it is less cytotoxic to melanoma cells than compounds 3, 4 and 5.

5.
J Cell Mol Med ; 25(14): 6496-6499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085765

RESUMO

DNA fragmentation produced by apoptotic DNases (endonucleases) leads to irreversible cell death. Although apoptotic DNases are simultaneously induced following toxic/oxidative cell injury and/or failed DNA repair, the study of DNases in apoptosis has generally been reductionist in approach, focusing on individual DNases rather than their possible cooperativity. Coordinated induction of DNases would require a mechanism of communication; however, mutual DNase induction or activation of DNases by enzymatic or non-enzymatic mechanisms is not currently recognized. The evidence presented in this review suggests apoptotic DNases operate in a network in which members induce each other through the DNA breaks they produce. With DNA breaks being a common communicator among DNases, it would be logical to propose that DNA breaks from other sources such as oxidative DNA damage or actions of DNA repair endonucleases and DNA topoisomerases may also serve as triggers for a cooperative DNase feedback loop leading to elevated DNA fragmentation and subsequent cell death. Therefore, mutual induction of apoptotic DNases has serious implications for studies focused on activation or inhibition of specific DNases as a strategy for therapeutic intervention aimed at modulation of cell death.


Assuntos
Apoptose/genética , Reparo do DNA/genética , DNA Topoisomerases/genética , Estresse Oxidativo/genética , Fragmentação do DNA , Desoxirribonucleases/genética , Humanos
6.
Nat Commun ; 12(1): 476, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473107

RESUMO

Endonuclease G (ENDOG), a mitochondrial nuclease, is known to participate in many cellular processes, including apoptosis and paternal mitochondrial elimination, while its role in autophagy remains unclear. Here, we report that ENDOG released from mitochondria promotes autophagy during starvation, which we find to be evolutionally conserved across species by performing experiments in human cell lines, mice, Drosophila and C. elegans. Under starvation, Glycogen synthase kinase 3 beta-mediated phosphorylation of ENDOG at Thr-128 and Ser-288 enhances its interaction with 14-3-3γ, which leads to the release of Tuberin (TSC2) and Phosphatidylinositol 3-kinase catalytic subunit type 3 (Vps34) from 14-3-3γ, followed by mTOR pathway suppression and autophagy initiation. Alternatively, ENDOG activates DNA damage response and triggers autophagy through its endonuclease activity. Our results demonstrate that ENDOG is a crucial regulator of autophagy, manifested by phosphorylation-mediated interaction with 14-3-3γ, and its endonuclease activity-mediated DNA damage response.


Assuntos
Autofagia/fisiologia , Dano ao DNA/fisiologia , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Apoptose , Caenorhabditis elegans , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Drosophila , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação , Transcriptoma , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
7.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401733

RESUMO

Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay is a long-established assay used to detect cell death-associated DNA fragmentation (3'-OH DNA termini) by endonucleases. Because these enzymes are particularly active in the kidney, TUNEL is widely used to identify and quantify DNA fragmentation and cell death in cultured kidney cells and animal and human kidneys resulting from toxic or hypoxic injury. The early characterization of TUNEL as an apoptotic assay has led to numerous misinterpretations of the mechanisms of kidney cell injury. Nevertheless, TUNEL is becoming increasingly popular for kidney injury assessment because it can be used universally in cultured and tissue cells and for all mechanisms of cell death. Furthermore, it is sensitive, accurate, quantitative, easily linked to particular cells or tissue compartments, and can be combined with immunohistochemistry to allow reliable identification of cell types or likely mechanisms of cell death. Traditionally, TUNEL analysis has been limited to the presence or absence of a TUNEL signal. However, additional information on the mechanism of cell death can be obtained from the analysis of TUNEL patterns.


Assuntos
Apoptose/genética , Fragmentação do DNA , Marcação In Situ das Extremidades Cortadas/métodos , Nefropatias/diagnóstico , Animais , Células Cultivadas , Desoxirribonucleases/metabolismo , Endonucleases/metabolismo , Humanos , Rim/citologia , Rim/enzimologia , Rim/lesões , Rim/patologia , Nefropatias/enzimologia , Nefropatias/fisiopatologia
8.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212932

RESUMO

Endonuclease-mediated DNA fragmentation is both an immediate cause and a result of apoptosis and of all other types of irreversible cell death after injury. It is produced by nine enzymes including DNase I, DNase 2, their homologs, caspase-activated DNase (CAD) and endonuclease G (EndoG). The endonucleases act simultaneously during cell death; however, regulatory links between these enzymes have not been established. We hypothesized that DNase I, the most abundant of endonucleases, may regulate other endonucleases. To test this hypothesis, rat kidney tubular epithelial NRK-52E cells were transfected with the DNase I gene or its inactive mutant in a pECFP expression vector, while control cells were transfected with the empty vector. mRNA expression of all nine endonucleases was studied using real-time RT-PCR; DNA strand breaks in endonuclease genes were determined by PCR and protein expression of the enzymes was measured by Western blotting and quantitative immunocytochemistry. Our data showed that DNase I, but not its inactive mutant, induces all other endonucleases at varying time periods after transfection, causes DNA breaks in endonuclease genes, and elevates protein expression of several endonucleases. This is the first evidence that endonucleases seem to be induced by the DNA-degrading activity of DNase I.


Assuntos
Quebras de DNA , Fragmentação do DNA , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Células Epiteliais/enzimologia , Túbulos Renais/enzimologia , Animais , Linhagem Celular , DNA/genética , Desoxirribonuclease I/genética , Ratos
9.
Antibiotics (Basel) ; 9(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998384

RESUMO

Acinetobacter baumannii has emerged as one of the most lethal drug-resistant bacteria in recent years. We report the synthesis and antimicrobial studies of 25 new pyrazole-derived hydrazones. Some of these molecules are potent and specific inhibitors of A. baumannii strains with a minimum inhibitory concentration (MIC) value as low as 0.78 µg/mL. These compounds are non-toxic to mammalian cell lines in in vitro studies. Furthermore, one of the potent molecules has been studied for possible in vivo toxicity in the mouse model and found to be non-toxic based on the effect on 14 physiological blood markers of organ injury.

10.
Sci Rep ; 10(1): 7734, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382091

RESUMO

Kruppel-like factor 2 (KLF2) is a positive transcriptional regulator of several endothelial protective molecules, including thrombomodulin (TM), a surface receptor, and endothelial nitric oxide synthase (eNOS), an enzyme that generates nitric oxide (NO). Loss of TM and eNOS causes endothelial dysfunction, which results in suppressed generation of activated protein C (APC) by TM-thrombin complex and in upregulation of intercellular adhesion molecule 1 (ICAM-1). Mechanistic studies revealed that activation of extracellular signal-regulated kinase 5 (ERK5) via upregulation of myocyte enhancer factor 2 (MEF2) induces KLF2 expression. Radiation causes endothelial dysfunction, but no study has investigated radiation's effects on the KLF2 pathway. Because fractionated radiation is routinely used during cancer radiotherapy, we decided to delineate the effects of radiation dose fractionation on the KLF2 signaling cascade at early time points (up to 24 h). We exposed human primary endothelial cells to radiation as a series of fractionated or as a single exposure, with the same total dose delivered to each group. We measured the expression and activity of critical members of the KLF2 pathway at subsequent time points, and determined whether pharmacological upregulation of KLF2 can reverse the radiation effects. Compared to single exposure, fractionated radiation profoundly suppressed KLF2, TM, and eNOS levels, subdued APC generation, declined KLF2 binding ability to TM and eNOS promoters, enhanced ICAM-1 expression, and decreased expression of upstream regulators of KLF2 (ERK5 and MEF2). Pharmacological inhibitors of the mevalonate pathway prevented fractionated-radiation-induced suppression of KLF2, TM, and eNOS expression. Finally, fractionated irradiation to thoracic region more profoundly suppressed KLF2 and enhanced ICAM-1 expression than single exposure in the lung at 24 h. These data clearly indicate that radiation dose fractionation plays a critical role in modulating levels of KLF2, its upstream regulators, and its downstream target molecules in endothelial cells. Our findings will provide important insights for selecting fractionated regimens during radiotherapy and for developing strategies to alleviate radiotherapy-induced toxicity to healthy tissues.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Fatores de Transcrição Kruppel-Like/genética , Óxido Nítrico Sintase Tipo III/genética , Trombomodulina/genética , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Fatores de Transcrição MEF2/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/radioterapia , Radiação , Transdução de Sinais/efeitos da radiação
11.
Molecules ; 24(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146470

RESUMO

Microbial resistance to drugs is an unresolved global concern, which is present in every country. Developing new antibiotics is one of the guidelines of the Centers for Disease Control and Preventions (CDC) to combat bacterial resistance to drugs. Based on our lead molecules, we report the synthesis and antimicrobial studies of 27 new pyrazole derivatives. These new coumarin-pyrazole-hydrazone hybrids are readily synthesized from commercially available starting materials and reagents using benign reaction conditions. All the synthesized molecules were tested against 14 Gram-positive and Gram-negative bacterial strains. Several of these molecules have been found to be potent growth inhibitors of several strains of these tested bacteria with minimum inhibitory concentrations as low as 1.56 µg/mL. Furthermore, active molecules are non-toxic in in vitro and in vivo toxicity studies.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Animais , Antibacterianos/química , Técnicas de Química Sintética , Humanos , Hidrazonas/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/metabolismo
12.
Antioxidants (Basel) ; 8(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845647

RESUMO

Natural antioxidant gamma-tocotrienol (GT3), a vitamin E family member, provides intestinal radiation protection. We seek to understand whether this protection is mediated via mucosal epithelial stem cells or sub-mucosal mesenchymal immune cells. Vehicle- or GT3-treated male CD2F1 mice were exposed to total body irradiation (TBI). Cell death was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Villus height and crypt depth were measured with computer-assisted software in tissue sections. Functional activity was determined with an intestinal permeability assay. Immune cell recovery was measured with immunohistochemistry and Western blot, and the regeneration of intestinal crypts was assessed with ex vivo organoid culture. A single dose of GT3 (200 mg/kg body weight (bwt)) administered 24 h before TBI suppressed cell death, prevented a decrease in villus height, increased crypt depth, attenuated intestinal permeability, and upregulated occludin level in the intestine compared to the vehicle treated group. GT3 accelerated mesenchymal immune cell recovery after irradiation, but it did not promote ex vivo organoid formation and failed to enhance the expression of stem cell markers. Finally, GT3 significantly upregulated protein kinase B or AKT phosphorylation after TBI. Pretreatment with GT3 attenuates TBI-induced structural and functional damage to the intestine, potentially by facilitating intestinal immune cell recovery. Thus, GT3 could be used as an intestinal radioprotector.

13.
J Appl Toxicol ; 37(11): 1325-1332, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28543094

RESUMO

Graphene, a crystalline allotrope or carbon, presents numerous useful properties; however, its toxicity is yet to be determined. One of the most dramatic and irreversible toxic abilities of carbon nanomaterials is the induction of DNA fragmentation produced by endogenous cellular endonucleases. This study demonstrated that pristine graphene exposed to cultured kidney tubular epithelial cells is capable of inducing DNA fragmentation measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which is usually associated with cell death. TUNEL (cell death) and endonuclease activity measured using a near infrared fluorescence probe was significantly higher in cells containing graphene aggregates detected by Raman spectroscopy. The elevation of TUNEL coincided with the increased abundance of heme oxygenase 1 (HO-1), heat shock protein 90 (HSP90), active caspase-3 and endonucleases (deoxyribonuclease I [DNase I] and endonuclease G [EndoG]), as measured by quantitative immunocytochemistry. Specific inhibitors for HO-1, HSP90, caspase-3, DNase I and EndoG almost completely blocked the DNA fragmentation induced by graphene exposure. Therefore, graphene induces cell death through oxidative injury, caspase-mediated and caspase-independent pathways; and endonucleases DNase I and EndoG are important for graphene toxicity. Inhibition of these pathways may ameliorate cell injury produced by graphene. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Dano ao DNA , Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/metabolismo , Células Epiteliais/efeitos dos fármacos , Grafite/toxicidade , Túbulos Renais/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Desoxirribonuclease I/antagonistas & inibidores , Relação Dose-Resposta a Droga , Endodesoxirribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Túbulos Renais/enzimologia , Túbulos Renais/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Medição de Risco , Fatores de Tempo
14.
Hum Mol Genet ; 26(4): 686-701, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28040732

RESUMO

The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Mutação de Sentido Incorreto , Profilinas/biossíntese , Medula Espinal/metabolismo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Profilinas/genética , Medula Espinal/patologia
15.
Nutr Metab (Lond) ; 13: 54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547236

RESUMO

BACKGROUND: 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), a heterocyclic aromatic amine (HCA) formed in meat that is cooked at high temperatures and then ingested, can potentially be retained in human adipose tissues. METHODS: To determine if PhIP is bioactive in the adipocyte, we exposed a human adipocyte cell line,HepG2 and Caco-2 cells to low dose PhIP. Uptake and retention of PhIP was determined and cytotoxicity was assessed by the TUNEL assay. Relative expression of PhIP-activating genes (CYP1A1, CYP1A2, SULT1A1 and UGT1A1) was determined by RT-PCR and global expression changes were also examined. RESULTS: The percent retention of 0.1 µCi [(14)C]-PhIP over a 24 h period was significantly higher in the adipocyte than the HepG2 (p = 0.0001) and Caco-2 (p = 0.0007) cell lines. Cytotoxicity rates were 14.4 and 2.6 % higher compared to controls in Caco-2 and HepG2 cells (p < 0.001 and 0.054, respectively); no significant differences were detected in adipocyte cells (p = 0.18). Caco-2 and HepG2 cells, respectively, had significantly higher basal expression of CYP1A1 (p = 0.001, p = 0.003), SULT1A1 (p = 0.04, p < 0.001) and UGT1A1 (p < 0.001, p = 0.01) compared to the adipocyte. Exposure to 5nM PhIP did not significantly induce expression of these genes in any of the cell lines. Global gene expression analysis of mature adipocytes exposed to 5nM PhIP for 72 h resulted in statistically significant changes in 8 genes (ANGPTL2, CD14, CIDEA, EGR1, FOS, IGFBP5, PALM and PSAT1). Gene-gene interaction and pathway analysis indicates that PhIP modulates genes controlled by the STAT3 transcriptional factor and initiates leptin signaling via the JAK/STAT and MAPK pathway cascades. Early growth response 1 (EGR1) and prostaglandin synthase 2 (COX-2) were down-regulated via c-Fos, while insulin binding protein 5 (IBP5) was up regulated. Expression of transcription factors (ANGPTL2, HP, LEP, SAA1, SAA2), genes related to inflammation (SAA1, LEP), diabetes (IGFBP5) and cancer risk (SAA2) were also elevated upon exposure to 5 nM PhIP.. CONCLUSIONS: PhIP mediates gene expression changes within the adipocyte, and the pathways most affected are related to cancer and other chronic diseases. Further studies are needed on the relationship between dietary carcinogens such as PhIP with cancer, obesity and diabetes.

16.
DNA Cell Biol ; 34(5): 316-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849439

RESUMO

Cells contain several apoptotic endonucleases, which appear to act simultaneously before and after cell death by destroying the host cell DNA. It is largely unknown how the endonucleases are being induced and whether they can regulate each other. This study was performed to determine whether apoptotic mitochondrial endonuclease G (EndoG) can regulate expression of other apoptotic endonucleases. The study showed that overexpression of mature EndoG in kidney tubular epithelial NRK-52E cells can increase expression of caspase-activated DNase (CAD) and four endonucleases that belong to DNase I group including DNase I, DNase X, DNase IL2, and DNase γ, but not endonucleases of the DNase 2 group. The induction of DNase I-type endonucleases was associated with DNA degradation in promoter/exon 1 regions of the endonuclease genes. These results together with findings on colocalization of immunostained endonucleases and TUNEL suggest that DNA fragmentation after EndoG overexpression was caused by DNase I endonucleases and CAD in addition to EndoG itself. Overall, these data provide first evidence for the existence of the integral network of apoptotic endonucleases regulated by EndoG.


Assuntos
Apoptose , Fragmentação do DNA , Desoxirribonuclease I/metabolismo , Desoxirribonucleases/metabolismo , Endodesoxirribonucleases/metabolismo , Regulação Enzimológica da Expressão Gênica , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Desoxirribonuclease I/genética , Desoxirribonucleases/genética , Endodesoxirribonucleases/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Túbulos Renais/citologia , Túbulos Renais/metabolismo , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Ren Nutr ; 25(2): 205-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25556310

RESUMO

A need exists for developing new therapies to improve cardiovascular outcomes in end-stage kidney disease. Three new areas that address novel pathophysiological mechanisms and/or therapeutic approaches toward cardiovascular events in chronic kidney disease patients include the use of an anti-inflammatory agent, the role of catalytic iron, and protein carbamylation. In preliminary studies, hydroxychloroquine, which has multiple anti-inflammatory properties, preserved vascular compliance for the aorta and major vessels, as well as reduced the extent of severity of atherosclerosis in ApoE-/- mice. The ability of iron to rapidly and reversibly cycle between 2 oxidation states makes iron potentially hazardous by enabling it to participate in the generation of powerful oxidant species. We have shown that high catalytic iron in the general population is associated with a 4-fold increase in prevalent cardiovascular disease (CVD), even after accounting for traditional risk factors. In addition, the highest levels of catalytic iron are present in dialysis patients and, more specifically, patients with prevalent CVD have several-fold higher catalytic iron levels compared with controls without CVD. These data suggest the utility of iron chelators for preventing and treating CVD in patients with chronic kidney disease and should be further investigated. Carbamylation of proteins results from nonenzymatic chemical modification by isocyanic acid derived from urea and an alternative route, the myeloperoxidase-catalyzed oxidation of thiocyanate. We have shown carbamylated low-density lipoprotein to have all the major biological effects relevant to atherosclerosis including endothelial cell injury, increased expression of cell adhesion molecules, and vascular smooth muscle cell proliferation. In 2 separate clinical studies, plasma levels of carbamylated protein independently predicted an increased risk of CVD and death.


Assuntos
Aterosclerose/complicações , Aterosclerose/fisiopatologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Fatores de Risco
18.
Am J Physiol Heart Circ Physiol ; 308(7): H749-58, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617357

RESUMO

AMP kinase (AMPK) plays an important role in the regulation of energy metabolism in cardiac cells. Furthermore, activation of AMPK protects the heart from myocardial infarction and heart failure. The present study examines whether or not AMPK affects the peroxisome proliferator-activated receptor-α (PPARα)/mitochondria pathway in response to acute oxidative stress in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts were exposed to H2O2-induced acute oxidative stress in the presence or absence of metformin, compound C (AMPK inhibitor), GW6471 (PPARα inhibitor), or A-769662 (AMPK activator). Results showed that AMPK activation by metformin reverted oxidative stress-induced inactivation of AMPK and prevented oxidative stress-induced cell death. In addition, metformin attenuated reactive oxygen species generation and depolarization of the inner mitochondrial membrane. The antioxidative effects of metformin were associated with the prevention of mitochondrial DNA damage in cardiomyocytes. Coimmunoprecipitation studies revealed that metformin abolished oxidative stress-induced physical interactions between PPARα and cyclophilin D (CypD), and the abolishment of these interactions was associated with inhibition of permeability transition pore formation. The beneficial effects of metformin were not due to acetylation or phosphorylation of PPARα in response to oxidative stress. In conclusion, this study demonstrates that the protective effects of metformin-induced AMPK activation against oxidative stress converge on mitochondria and are mediated, at least in part, through the dissociation of PPARα-CypD interactions, independent of phosphorylation and acetylation of PPARα and CypD.


Assuntos
Adenilato Quinase/metabolismo , Antioxidantes/farmacologia , Ciclofilinas/metabolismo , Ativadores de Enzimas/farmacologia , Metformina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Adenilato Quinase/antagonistas & inibidores , Animais , Compostos de Bifenilo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Oxidantes/farmacologia , PPAR alfa/antagonistas & inibidores , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pironas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
19.
DNA Cell Biol ; 34(2): 92-100, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25401220

RESUMO

Apoptotic endonuclease G (EndoG) is responsible for DNA fragmentation both during and after cell death. Previous studies demonstrated that genetic inactivation of EndoG is cytoprotective against various pro-apoptotic stimuli; however, specific inhibitors for EndoG are not available. In this study, we have developed a high-throughput screening assay for EndoG and have used it to screen a chemical library. The screening resulted in the identification of two potent EndoG inhibitors, PNR-3-80 and PNR-3-82, which are thiobarbiturate analogs. As determined by their IC50s, the inhibitors are more potent than ZnCl2 or EDTA. They inhibit EndoG at one or two orders of magnitude greater than another apoptotic endonuclease, DNase I, and do not inhibit the other five tested cell death-related enzymes: DNase II, RNase A, proteinase, lactate dehydrogenase, and superoxide dismutase 1. Exposure of natural EndoG-expressing 22Rv1 or EndoG-overexpressing PC3 cells rendered them significantly resistant to Cisplatin and Docetaxel, respectively. These novel EndoG inhibitors have the potential to be utilized for amelioration of cell injuries in which participation of EndoG is essential.


Assuntos
Apoptose/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Docetaxel , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Endodesoxirribonucleases/metabolismo , Inibidores Enzimáticos/química , Humanos , Cinética , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Taxoides/farmacologia , Tiobarbitúricos/química , Tiobarbitúricos/farmacologia
20.
J Biomol Screen ; 20(2): 202-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25326282

RESUMO

Deoxyribonuclease I (DNase I), the most active and abundant apoptotic endonuclease in mammals, is known to mediate toxic, hypoxic, and radiation injuries to the cell. Neither inhibitors of DNase I nor high-throughput methods for screening of high-volume chemical libraries in search of DNase I inhibitors are, however, available. To overcome this problem, we developed a high-throughput DNase I assay. The assay is optimized for a 96-well plate format and based on the increase of fluorescence intensity when fluorophore-labeled oligonucleotide is degraded by the DNase. The assay is highly sensitive to DNase I compared to other endonucleases, reliable (Z' ≥ 0.5), and operationally simple, and it has low operator, intraassay, and interassay variability. The assay was used to screen a chemical library, and several potential DNase I inhibitors were identified. After comparison, 2 hit compounds were selected and shown to protect against cisplatin-induced kidney cell death in vitro. This assay will be suitable for identifying inhibitors of DNase I and, potentially, other endonucleases.


Assuntos
Desoxirribonuclease I/metabolismo , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala , Animais , Linhagem Celular , Desoxirribonuclease I/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Ratos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...