Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(7): 073106, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27475547

RESUMO

Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

2.
Phys Rev Lett ; 107(6): 060402, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902300

RESUMO

We experimentally realize Rydberg excitations in Bose-Einstein condensates of rubidium atoms loaded into quasi-one-dimensional traps and in optical lattices. Our results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations. We also find that the Rydberg excitations in the optical lattice do not destroy the phase coherence of the condensate, and our results in that system agree with the picture of localized collective Rydberg excitations including nearest-neighbor blockade.

3.
Opt Express ; 19(7): 6007-19, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451625

RESUMO

Rydberg spectroscopy of rubidium cold atoms trapped in a magneto-optical trap (MOT) was performed in a quartz cell. When electric fields acting on the atoms generated by a plate external to the cell were continuously applied, electric charges on the cell walls were created, as monitored on the Rydberg spectra. Avoiding accumulation of the charges and realizing good control over the applied electric field was instead obtained when the fields were applied only for a short time, typically a few microseconds. In a two-photon excitation via the 62P state to the Rydberg state, the laser resonant with the 52S-62P transition photoionizes the excited state. The photoionization-created ions produce an internal electric field which deforms the excitation spectra, as monitored on the Autler-Townes absorption spectra.


Assuntos
Rubídio/química , Rubídio/efeitos da radiação , Análise Espectral/métodos , Campos Eletromagnéticos , Íons , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...