Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600242

RESUMO

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.

2.
Nucleic Acids Res ; 52(2): 643-659, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38038247

RESUMO

Mislocalization of overexpressed CENP-A (Cse4 in budding yeast, Cnp1 in fission yeast, CID in flies) contributes to chromosomal instability (CIN) in yeasts, flies, and human cells. Mislocalization of CENP-A is observed in many cancers and this correlates with poor prognosis. Structural mechanisms that contribute to mislocalization of CENP-A are poorly defined. Here, we show that interaction of histone H4 with Cse4 facilitates an in vivo conformational change in Cse4 promoting its mislocalization in budding yeast. We determined that Cse4 Y193A mutant exhibits reduced sumoylation, mislocalization, interaction with histone H4, and lethality in psh1Δ and cdc48-3 strains; all these phenotypes are suppressed by increased gene dosage of histone H4. We developed a new in vivo approach, antibody accessibility (AA) assay, to examine the conformation of Cse4. AA assay showed that wild-type Cse4 with histone H4 is in an 'open' state, while Cse4 Y193A predominantly exhibits a 'closed' state. Increased gene dosage of histone H4 contributes to a shift of Cse4 Y193A to an 'open' state with enhanced sumoylation and mislocalization. We provide molecular insights into how Cse4-H4 interaction changes the conformational state of Cse4 in vivo. These studies advance our understanding for mechanisms that promote mislocalization of CENP-A in human cancers.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Neoplasias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação
3.
Mol Biol Cell ; 34(10): ar99, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436802

RESUMO

Centromere (CEN) identity is specified epigenetically by specialized nucleosomes containing evolutionarily conserved CEN-specific histone H3 variant CENP-A (Cse4 in Saccharomyces cerevisiae, CENP-A in humans), which is essential for faithful chromosome segregation. However, the epigenetic mechanisms that regulate Cse4 function have not been fully defined. In this study, we show that cell cycle-dependent methylation of Cse4-R37 regulates kinetochore function and high-fidelity chromosome segregation. We generated a custom antibody that specifically recognizes methylated Cse4-R37 and showed that methylation of Cse4 is cell cycle regulated with maximum levels of methylated Cse4-R37 and its enrichment at the CEN chromatin occur in the mitotic cells. Methyl-mimic cse4-R37F mutant exhibits synthetic lethality with kinetochore mutants, reduced levels of CEN-associated kinetochore proteins and chromosome instability (CIN), suggesting that mimicking the methylation of Cse4-R37 throughout the cell cycle is detrimental to faithful chromosome segregation. Our results showed that SPOUT methyltransferase Upa1 contributes to methylation of Cse4-R37 and overexpression of UPA1 leads to CIN phenotype. In summary, our studies have defined a role for cell cycle-regulated methylation of Cse4 in high-fidelity chromosome segregation and highlight an important role of epigenetic modifications such as methylation of kinetochore proteins in preventing CIN, an important hallmark of human cancers.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Ciclo Celular , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
4.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129573

RESUMO

Restricting the localization of the evolutionarily conserved centromeric histone H3 variant CENP-A to centromeres prevents chromosomal instability (CIN). The mislocalization of CENP-A to non-centromeric regions contributes to CIN in yeasts, flies and human cells. Even though overexpression and mislocalization of CENP-A have been reported in cancers, the mechanisms responsible for its mislocalization remain poorly understood. Here, we used an imaging-based high-throughput RNAi screen to identify factors that prevent mislocalization of overexpressed YFP-tagged CENP-A (YFP-CENP-A) in HeLa cells. Among the top five candidates in the screen - the depletion of which showed increased nuclear YFP-CENP-A fluorescence - were the histone chaperones CHAF1B (or p60) and CHAF1A (or p150). Follow-up validation and characterization experiments showed that CHAF1B-depleted cells exhibited CENP-A mislocalization, CIN phenotypes and increased enrichment of CENP-A in chromatin fractions. The depletion of DAXX, a histone H3.3 chaperone, suppressed CENP-A mislocalization and CIN in CHAF1B-depleted cells. We propose that in CHAF1B-depleted cells, DAXX promotes mislocalization of the overexpressed CENP-A to non-centromeric regions, resulting in CIN. In summary, we identified regulators of CENP-A localization and defined a role for CHAF1B in preventing DAXX-dependent CENP-A mislocalization and CIN.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Humanos , Histonas/genética , Proteína Centromérica A/genética , Células HeLa , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromatina , Centrômero/metabolismo , Chaperonas Moleculares/metabolismo , Instabilidade Cromossômica , Autoantígenos/genética , Fator 1 de Modelagem da Cromatina/genética
5.
Cell Rep ; 42(3): 112260, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36924503

RESUMO

Matrin3 is an RNA-binding protein that regulates diverse RNA-related processes, including mRNA splicing. Although Matrin3 has been intensively studied in neurodegenerative diseases, its function in cancer remains unclear. Here, we report Matrin3-mediated regulation of mitotic spindle dynamics in colorectal cancer (CRC) cells. We comprehensively identified RNAs bound and regulated by Matrin3 in CRC cells and focused on CDC14B, one of the top Matrin3 targets. Matrin3 knockdown results in increased inclusion of an exon containing a premature termination codon in the CDC14B transcript and simultaneous down-regulation of the standard CDC14B transcript. Knockdown of CDC14B phenocopies the defects in mitotic spindle dynamics upon Matrin3 knockdown, and the elongated and misoriented mitotic spindle observed upon Matrin3 knockdown are rescued upon overexpression of CDC14B, suggesting that CDC14B is a key downstream effector of Matrin3. Collectively, these data reveal a role for the Matrin3/CDC14B axis in control of mitotic spindle dynamics.


Assuntos
Processamento Alternativo , Fosfatases de Especificidade Dupla , Processamento Alternativo/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo
6.
Mol Cell Biol ; 42(12): e0028922, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36342127

RESUMO

PURPL is a p53-induced lncRNA that suppresses basal p53 levels. Here, we investigated PURPL upon p53 activation in liver cancer cells, where it is expressed at significantly higher levels than other cell types. Using isoform sequencing, we discovered novel PURPL transcripts that have a retained intron and/or previously unannotated exons. To determine PURPL function upon p53 activation, we performed transcriptome sequencing (RNA-Seq) after depleting PURPL using CRISPR interference (CRISPRi), followed by Nutlin treatment to induce p53. Strikingly, although loss of PURPL in untreated cells altered the expression of only 7 genes, loss of PURPL resulted in altered expression of ~800 genes upon p53 activation, revealing a context-dependent function of PURPL. Pathway analysis suggested that PURPL is important for fine-tuning the expression of specific genes required for mitosis. Consistent with these results, we observed a significant decrease in the percentage of mitotic cells upon PURPL depletion. Collectively, these data identify novel transcripts from the PURPL locus and suggest that PURPL delicately moderates the expression of mitotic genes in the context of p53 activation to control cell cycle arrest.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Éxons/genética
7.
Nucleic Acids Res ; 50(6): 3276-3291, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35234920

RESUMO

Restricting the localization of CENP-A (Cse4 in Saccharomyces cerevisiae) to centromeres prevents chromosomal instability (CIN). Mislocalization of overexpressed CENP-A to non-centromeric chromatin contributes to CIN in budding and fission yeasts, flies, and humans. Overexpression and mislocalization of CENP-A is observed in cancers and is associated with increased invasiveness. Mechanisms that remove mislocalized CENP-A and target it for degradation have not been defined. Here, we report that Cdc48 and its cofactors Ufd1 and Npl4 facilitate the removal of mislocalized Cse4 from non-centromeric chromatin. Defects in removal of mislocalized Cse4 contribute to lethality of overexpressed Cse4 in cdc48,ufd1 andnpl4 mutants. High levels of polyubiquitinated Cse4 and mislocalization of Cse4 are observed in cdc48-3, ufd1-2 and npl4-1mutants even under normal physiological conditions, thereby defining polyubiquitinated Cse4 as the substrate of the ubiquitin directed segregase Cdc48Ufd1/Npl4. Accordingly, Npl4, the ubiquitin binding receptor, associates with mislocalized Cse4, and this interaction is dependent on Psh1-mediated polyubiquitination of Cse4. In summary, we provide the first evidence for a mechanism that facilitates the removal of polyubiquitinated and mislocalized Cse4 from non-centromeric chromatin. Given the conservation of Cdc48Ufd1/Npl4 in humans, it is likely that defects in such pathways may contribute to CIN in human cancers.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
8.
Mol Biol Cell ; 32(21): ar15, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432494

RESUMO

Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN), which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high-fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle-dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores, and defects in chromosome segregation, are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase-dead variant of Cdc7 (cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phospho-deficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/fisiologia , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Epigênese Genética , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
9.
RNA ; 27(9): 1046-1067, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162742

RESUMO

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.


Assuntos
Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Mutação de Sentido Incorreto , RNA Fúngico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Nanismo/enzimologia , Nanismo/genética , Nanismo/patologia , Exorribonucleases/química , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Fácies , Expressão Gênica , Glicina/química , Glicina/metabolismo , Perda Auditiva/enzimologia , Perda Auditiva/genética , Perda Auditiva/patologia , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , RNA Fúngico/química , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Síndrome
10.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33751052

RESUMO

Mislocalization of the centromeric histone H3 variant (Cse4 in budding yeast, CID in flies, CENP-A in humans) to noncentromeric regions contributes to chromosomal instability (CIN) in yeast, fly, and human cells. Overexpression and mislocalization of CENP-A have been observed in cancers, however, the mechanisms that facilitate the mislocalization of overexpressed CENP-A have not been fully explored. Defects in proteolysis of overexpressed Cse4 (GALCSE4) lead to its mislocalization and synthetic dosage lethality (SDL) in mutants for E3 ubiquitin ligases (Psh1, Slx5, SCFMet30, and SCFCdc4), Doa1, Hir2, and Cdc7. In contrast, defects in sumoylation of overexpressed cse4K215/216/A/R prevent its mislocalization and do not cause SDL in a psh1Δ strain. Here, we used a genome-wide screen to identify factors that facilitate the mislocalization of overexpressed Cse4 by characterizing suppressors of the psh1Δ GALCSE4 SDL. Deletions of histone H4 alleles (HHF1 or HHF2), which were among the most prominent suppressors, also suppress slx5Δ, cdc4-1, doa1Δ, hir2Δ, and cdc7-4 GALCSE4 SDL. Reduced dosage of H4 leads to defects in sumoylation and reduced mislocalization of overexpressed Cse4, which contributes to suppression of CIN when Cse4 is overexpressed. We determined that the hhf1-20, cse4-102, and cse4-111 mutants, which are defective in the Cse4-H4 interaction, also exhibit reduced sumoylation of Cse4 and do not display psh1Δ GALCSE4 SDL. In summary, we have identified genes that contribute to the mislocalization of overexpressed Cse4 and defined a role for the gene dosage of H4 in facilitating Cse4 sumoylation and mislocalization to noncentromeric regions, leading to CIN when Cse4 is overexpressed.


Assuntos
Proteína Centromérica A/genética , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Dosagem de Genes , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Nucleossomos , Proteínas Serina-Treonina Quinases , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/genética
11.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33620383

RESUMO

Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore-microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A-overexpressing cancers.


Assuntos
Aneuploidia , Proteína Centromérica A/biossíntese , Instabilidade Cromossômica , Cinetocoros/metabolismo , Micronúcleos com Defeito Cromossômico , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Centromérica A/genética , Xenoenxertos , Humanos , Cinetocoros/patologia , Camundongos , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/patologia
12.
Mol Biol Cell ; 32(1): 74-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147102

RESUMO

R-loops, the byproduct of DNA-RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA-RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.


Assuntos
Centrômero/metabolismo , Cromatina/química , Instabilidade Cromossômica , Cinetocoros/metabolismo , Estruturas R-Loop , Saccharomycetales/metabolismo , Ciclo Celular , DNA Fúngico/metabolismo , Genoma Fúngico , Histonas/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Saccharomycetales/genética
13.
G3 (Bethesda) ; 10(6): 2057-2068, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295767

RESUMO

The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1Δ strains display synthetic dosage lethality (SDL) with GALCSE4 We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4 We determined that cdc7-7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4 Mutation of MCM5 (mcm5-bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7-7 strain. We determined that mcm5-bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7-7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7-7psh1Δ strain were similar to that of cdc7-7 and psh1Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1 Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Serina-Treonina Quinases , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
14.
Genetics ; 214(4): 839-854, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32111629

RESUMO

Centromeric localization of CENP-A (Cse4 in Saccharomyces cerevisiae, CID in flies, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of overexpressed CENP-A contributes to aneuploidy in yeast, flies, and humans, and is proposed to promote tumorigenesis in human cancers. Hence, defining molecular mechanisms that promote or prevent mislocalization of CENP-A is an area of active investigation. In budding yeast, evolutionarily conserved histone chaperones Scm3 and chromatin assembly factor-1 (CAF-1) promote localization of Cse4 to centromeric and noncentromeric regions, respectively. Ubiquitin ligases, such as Psh1 and Slx5, and histone chaperones (HIR complex) regulate proteolysis of overexpressed Cse4 and prevent its mislocalization to noncentromeric regions. In this study, we have identified sumoylation sites lysine (K) 215/216 in the C terminus of Cse4, and shown that sumoylation of Cse4 K215/216 facilitates its genome-wide deposition into chromatin when overexpressed. Our results showed reduced levels of sumoylation of mutant Cse4 K215/216R/A [K changed to arginine (R) or alanine (A)] and reduced interaction of mutant Cse4 K215/216R/A with Scm3 and CAF-1 when compared to wild-type Cse4 Consistent with these results, levels of Cse4 K215/216R/A in the chromatin fraction and localization to centromeric and noncentromeric regions were reduced. Furthermore, in contrast to GAL-CSE4, which exhibits Synthetic Dosage Lethality (SDL) in psh1∆, slx5∆, and hir2∆ strains, GAL-cse4K215/216R does not exhibit SDL in these strains. Taken together, our results show that deposition of Cse4 into chromatin is facilitated by its C-terminal sumoylation.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Mutações Sintéticas Letais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
PLoS Genet ; 16(2): e1008597, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032354

RESUMO

Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) to centromeres is essential for faithful chromosome segregation. Mislocalization of CENP-A leads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression and mislocalization of CENP-A has been observed in many cancers and this correlates with increased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels and localization under physiological conditions have not been defined. In this study we used a genome-wide genetic screen to identify essential genes required for Cse4 homeostasis to prevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, F-box (SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 and Cdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent its mislocalization for faithful chromosome segregation under physiological conditions. The interaction of Met30 with Cdc4 is independent of the D domain, which is essential for their homodimerization and ubiquitination of other substrates. The requirement for both Cdc4 and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 and Met30 has not previously been described. Met30 is necessary for the interaction between Cdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization of Cse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalization to defects in kinetochore structure and show that SCF-mediated proteolysis of Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromeric regions, thus ensuring faithful chromosome segregation. In summary, we have identified essential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysis of Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Centrômero/metabolismo , Segregação de Cromossomos , Domínios Proteicos , Proteólise , Ubiquitinação
16.
Curr Genet ; 65(6): 1325-1332, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31119371

RESUMO

Centromere identity is specified epigenetically by specialized nucleosomes containing the evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) which is essential for faithful chromosome segregation. However, the mechanisms of epigenetic regulation of Cse4 have not been clearly defined. We have identified two kinases, Cdc5 (Plk1 in humans) and Ipl1 (Aurora B kinase in humans) that phosphorylate Cse4 to prevent chromosomal instability (CIN). Cdc5 associates with Cse4 in mitosis and Cdc5-mediated phosphorylation of Cse4 is coincident with the centromeric enrichment of Cdc5 during metaphase. Defects in Cdc5-mediated Cse4 phosphorylation causes CIN, whereas constitutive association of Cdc5 with Cse4 results in lethality. Cse4 is also a substrate for Ipl1 and phospho-mimetic cse4 mutants suppress growth defects of ipl1 and Ipl1 kinetochore substrate mutants, namely dam1 spc34 and ndc80. Ipl1-mediated phosphorylation of Cse4 regulates kinetochore-microtubule interactions and chromosome biorientation. We propose that collaboration of Cdc5- and Ipl1-mediated phosphorylation of Cse4 modulates kinetochore structure and function, and chromosome biorientation. These findings demonstrate how phosphorylation of Cse4 regulates the integrity of the kinetochore, and acts as an epigenetic marker for mitotic control.


Assuntos
Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aurora Quinases/genética , Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Mol Biol Cell ; 30(8): 1020-1036, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726152

RESUMO

Evolutionarily conserved polo-like kinase, Cdc5 (Plk1 in humans), associates with kinetochores during mitosis; however, the role of cell cycle-dependent centromeric ( CEN) association of Cdc5 and its substrates that exclusively localize to the kinetochore have not been characterized. Here we report that evolutionarily conserved CEN histone H3 variant, Cse4 (CENP-A in humans), is a substrate of Cdc5, and that the cell cycle-regulated association of Cse4 with Cdc5 is required for cell growth. Cdc5 contributes to Cse4 phosphorylation in vivo and interacts with Cse4 in mitotic cells. Mass spectrometry analysis of in vitro kinase assays showed that Cdc5 phosphorylates nine serine residues clustered within the N-terminus of Cse4. Strains with cse4-9SA exhibit increased errors in chromosome segregation, reduced levels of CEN-associated Mif2 and Mcd1/Scc1 when combined with a deletion of MCM21. Moreover, the loss of Cdc5 from the CEN chromatin contributes to defects in kinetochore integrity and reduction in CEN-associated Cse4. The cell cycle-regulated association of Cdc5 with Cse4 is essential for cell viability as constitutive association of Cdc5 with Cse4 at the kinetochore leads to growth defects. In summary, our results have defined a role for Cdc5-mediated Cse4 phosphorylation in faithful chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Proteínas de Ciclo Celular/fisiologia , Centrômero/metabolismo , Proteína Centromérica A/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
Front Genet ; 9: 379, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279700

RESUMO

Cell viability and gene expression profiles are altered in cellular models of neurodegenerative disorders such as Huntington's Disease (HD). Using the yeast model system, we show that the SUMO-targeted ubiquitin ligase (STUbL) Slx5 reduces the toxicity and abnormal transcriptional activity associated with a mutant, aggregation-prone fragment of huntingtin (Htt), the causative agent of HD. We demonstrate that expression of an aggregation-prone Htt construct with 103 glutamine residues (103Q), but not the non-expanded form (25Q), results in severe growth defects in slx5Δ and slx8Δ cells. Since Slx5 is a nuclear protein and because Htt expression affects gene transcription, we assessed the effect of STUbLs on the transcriptional properties of aggregation-prone Htt. Expression of Htt 25Q and 55Q fused to the Gal4 activation domain (AD) resulted in reporter gene auto-activation. Remarkably, the auto-activation of Htt constructs was abolished by expression of Slx5 fused to the Gal4 DNA-binding domain (BD-Slx5). In support of these observations, RNF4, the human ortholog of Slx5, curbs the aberrant transcriptional activity of aggregation-prone Htt in yeast and a variety of cultured human cell lines. Functionally, we find that an extra copy of SLX5 specifically reduces Htt aggregates in the cytosol as well as chromatin-associated Htt aggregates in the nucleus. Finally, using RNA sequencing, we identified and confirmed specific targets of Htt's transcriptional activity that are modulated by Slx5. In summary, this study of STUbLs uncovers a conserved pathway that counteracts the accumulation of aggregating, transcriptionally active Htt (and possibly other poly-glutamine expanded proteins) on chromatin in both yeast and in mammalian cells.

19.
Genetics ; 210(1): 203-218, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30012561

RESUMO

Centromeric localization of the evolutionarily conserved centromere-specific histone H3 variant CENP-A (Cse4 in yeast) is essential for faithful chromosome segregation. Overexpression and mislocalization of CENP-A lead to chromosome segregation defects in yeast, flies, and human cells. Overexpression of CENP-A has been observed in human cancers; however, the molecular mechanisms preventing CENP-A mislocalization are not fully understood. Here, we used a genome-wide synthetic genetic array (SGA) to identify gene deletions that exhibit synthetic dosage lethality (SDL) when Cse4 is overexpressed. Deletion for genes encoding the replication-independent histone chaperone HIR complex (HIR1, HIR2, HIR3, HPC2) and a Cse4-specific E3 ubiquitin ligase, PSH1, showed highest SDL. We defined a role for Hir2 in proteolysis of Cse4 that prevents mislocalization of Cse4 to noncentromeric regions for genome stability. Hir2 interacts with Cse4 in vivo, and hir2∆ strains exhibit defects in Cse4 proteolysis and stabilization of chromatin-bound Cse4 Mislocalization of Cse4 to noncentromeric regions with a preferential enrichment at promoter regions was observed in hir2∆ strains. We determined that Hir2 facilitates the interaction of Cse4 with Psh1, and that defects in Psh1-mediated proteolysis contribute to increased Cse4 stability and mislocalization of Cse4 in the hir2∆ strain. In summary, our genome-wide screen provides insights into pathways that regulate proteolysis of Cse4 and defines a novel role for the HIR complex in preventing mislocalization of Cse4 by facilitating proteolysis of Cse4, thereby promoting genome stability.


Assuntos
Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Cromatina/metabolismo , Segregação de Cromossomos , Estudo de Associação Genômica Ampla , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
G3 (Bethesda) ; 8(4): 1215-1223, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29432128

RESUMO

Stringent regulation of cellular levels of evolutionarily conserved centromeric histone H3 variant (CENP-A in humans, CID in flies, Cse4 in yeast) prevents its mislocalization to non-centromeric chromatin. Overexpression and mislocalization of CENP-A has been observed in cancers and leads to aneuploidy in yeast, flies, and human cells. Ubiquitin-mediated proteolysis of Cse4 by E3 ligases such as Psh1 and Sumo-Targeted Ubiquitin Ligase (STUbL) Slx5 prevent mislocalization of Cse4. Previously, we identified Siz1 and Siz2 as the major E3 ligases for sumoylation of Cse4. In this study, we have identified lysine 65 (K65) in Cse4 as a site that regulates sumoylation and ubiquitin-mediated proteolysis of Cse4 by Slx5. Strains expressing cse4 K65R exhibit reduced levels of sumoylated and ubiquitinated Cse4 in vivo Furthermore, co-immunoprecipitation experiments reveal reduced interaction of cse4 K65R with Slx5, leading to increased stability and mislocalization of cse4 K65R under normal physiological conditions. Based on the increased stability of cse4 K65R in psh1∆ strains but not in slx5∆ strains, we conclude that Slx5 targets sumoylated Cse4 K65 for ubiquitination-mediated proteolysis independent of Psh1. In summary, we have identified and characterized the physiological role of Cse4 K65 in sumoylation, ubiquitin-mediated proteolysis, and localization of Cse4 for genome stability.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilação , Segregação de Cromossomos , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Transporte Proteico , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...