Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 14(6): 2613-2622, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722921

RESUMO

BACKGROUND: Age-related muscle decline (sarcopenia) associates with numerous health risk factors and poor quality of life. Drugs that counter sarcopenia without harmful side effects are lacking, and repurposing existing pharmaceuticals could expedite realistic clinical options. Recent studies suggest bisphosphonates promote muscle health; however, the efficacy of bisphosphonates as an anti-sarcopenic therapy is currently unclear. METHODS: Using Caenorhabditis elegans as a sarcopenia model, we treated animals with 100 nM, 1, 10, 100 and 500 µM zoledronic acid (ZA) and assessed lifespan and healthspan (movement rates) using a microfluidic chip device. The effects of ZA on sarcopenia were examined using GFP-tagged myofibres or mitochondria at days 0, 4 and 6 post-adulthood. Mechanisms of ZA-mediated healthspan extension were determined using combined ZA and targeted RNAi gene knockdown across the life-course. RESULTS: We found 100 nM and 1 µM ZA increased lifespan (P < 0.001) and healthspan [954 ± 53 (100 nM) and 963 ± 48 (1 µM) vs. 834 ± 59% (untreated) population activity AUC, P < 0.05]. 10 µM ZA shortened lifespan (P < 0.0001) but not healthspan (758.9 ± 37 vs. 834 ± 59, P > 0.05), whereas 100 and 500 µM ZA were larval lethal. ZA (1 µM) significantly improved myofibrillar structure on days 4 and 6 post-adulthood (83 and 71% well-organized myofibres, respectively, vs. 56 and 34% controls, P < 0.0001) and increased well-networked mitochondria at day 6 (47 vs. 16% in controls, P < 0.01). Genes required for ZA-mediated healthspan extension included fdps-1/FDPS-1 (278 ± 9 vs. 894 ± 17% population activity AUC in knockdown + 1 µM ZA vs. untreated controls, respectively, P < 0.0001), daf-16/FOXO (680 ± 16 vs. 894 ± 17%, P < 0.01) and agxt-2/BAIBA (531 ± 23 vs. 552 ± 8%, P > 0.05). Life/healthspan was extended through knockdown of igdb-1/FNDC5 (635 ± 10 vs. 523 ± 10% population activity AUC in gene knockdown vs. untreated controls, P < 0.01) and sir-2.3/SIRT-4 (586 ± 10 vs. 523 ± 10%, P < 0.05), with no synergistic improvements in ZA co-treatment vs. knockdown alone [651 ± 12 vs. 635 ± 10% (igdb-1/FNDC5) and 583 ± 9 vs. 586 ± 10% (sir-2.3/SIRT-4), both P > 0.05]. Conversely, let-756/FGF21 and sir-2.2/SIRT-4 were dispensable for ZA-induced healthspan [630 ± 6 vs. 523 ± 10% population activity AUC in knockdown + 1 µM ZA vs. untreated controls, P < 0.01 (let-756/FGF21) and 568 ± 9 vs. 523 ± 10%, P < 0.05 (sir-2.2/SIRT-4)]. CONCLUSIONS: Despite lacking an endoskeleton, ZA delays Caenorhabditis elegans sarcopenia, which translates to improved neuromuscular function across the life course. Bisphosphonates might, therefore, be an immediately exploitable anti-sarcopenia therapy.


Assuntos
Proteínas de Caenorhabditis elegans , Sarcopenia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Qualidade de Vida , Músculos
2.
Aging Clin Exp Res ; 35(10): 2271-2275, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466861

RESUMO

BACKGROUND: Sarcopenia is the progressive loss of muscle mass and function with age. A number of different sarcopenia definitions have been proposed and utilised in research. This study aimed to investigate how the prevalence of sarcopenia in a research cohort of older adults is influenced by the use of independent aspects of these different definitions. METHODS: Data from 255 research participants were compiled. Defining criteria by the European Working Group on Sarcopenia in Older People, the International Working Group on Sarcopenia (IWGS), and the Foundation for the National Institutes of Health were applied. RESULTS: Prevalence of sarcopenia using muscle mass ranged from 4 to 22%. Gait speed and handgrip strength criteria identified 4-34% and 4-16% of participants as sarcopenic, respectively. CONCLUSION: Prevalence of sarcopenia differs substantially depending on the criteria used. Work is required to address the impact of this for sarcopenia research to be usefully translated to inform on clinical practice.


Assuntos
Sarcopenia , Humanos , Idoso , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Força da Mão/fisiologia , Prevalência , Velocidade de Caminhada
3.
J Steroid Biochem Mol Biol ; 229: 106266, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822332

RESUMO

Studies in vitro have demonstrated a key molecular role for 1,25-dihydroxyvitamin D (1,25D) in skeletal muscle function, with vitamin D-deficiency (low serum 25-hydroxyvitamin D, 25D) being associated with muscle pain and weakness. Despite this, an understanding of the overall role of vitamin D in muscle health (particularly the impact of vitamin D-related genetic variants) has yet to be fully resolved, relative to more well-studied targets such as the skeleton. Thus, we aimed to review existing studies that have investigated relationships between skeletal muscle function and single nucleotide polymorphisms (SNPs) within vitamin D-related genes. A systematic review of papers published between January 2000 and June 2022 on PubMed, EMBASE and Web of Science pertaining to association between functionally relevant vitamin D receptor genetic variants and variants within genes of the vitamin D pathway and skeletal muscle function/outcomes was performed. 21 articles were included in the review for final analysis, of which 20 only studied genetic variation of the VDR gene. Of the included articles, 81 % solely included participants aged ≥ 50 years and of the 9 studies that did not only include White individuals, only 2 included Black participants. Within the vitamin D system, the VDR gene is the primary gene of which associations between polymorphisms and muscle function have been investigated. VDR polymorphisms have been significantly associated with muscle phenotypes in two or more studies. Of note A1012G was significantly associated with higher handgrip strength, but the results for other SNPs were notably variable between studies. While the lack of definitive evidence and study heterogeneity makes it difficult to draw conclusions, the findings of this review highlight a need for improvements with regards to the use of more diverse study populations, i.e., inclusion of Black individuals and other people of colour, and expanding research scope beyond the VDR gene.


Assuntos
Força da Mão , Receptores de Calcitriol , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D , Músculo Esquelético/metabolismo , Vitaminas/metabolismo , Polimorfismo de Nucleotídeo Único
5.
J Cachexia Sarcopenia Muscle ; 13(6): 2616-2629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36104842

RESUMO

Short, intermittent episodes of disuse muscle atrophy (DMA) may have negative impact on age related muscle loss. There is evidence of variability in rate of DMA between muscles and over the duration of immobilization. As yet, this is poorly characterized. This review aims to establish and compare the time-course of DMA in immobilized human lower limb muscles in both healthy and critically ill individuals, exploring evidence for an acute phase of DMA and differential rates of atrophy between and muscle groups. MEDLINE, Embase, CINHAL and CENTRAL databases were searched from inception to April 2021 for any study of human lower limb immobilization reporting muscle volume, cross-sectional area (CSA), architecture or lean leg mass over multiple post-immobilization timepoints. Risk of bias was assessed using ROBINS-I. Where possible meta-analysis was performed using a DerSimonian and Laird random effects model with effect sizes reported as mean differences (MD) with 95% confidence intervals (95% CI) at various time-points and a narrative review when meta-analysis was not possible. Twenty-nine studies were included, 12 in healthy volunteers (total n = 140), 18 in patients on an Intensive Therapy Unit (ITU) (total n = 516) and 3 in patients with ankle fracture (total n = 39). The majority of included studies are at moderate risk of bias. Rate of quadriceps atrophy over the first 14 days was significantly greater in the ITU patients (MD -1.01 95% CI -1.32, -0.69), than healthy cohorts (MD -0.12 95% CI -0.49, 0.24) (P < 0.001). Rates of atrophy appeared to vary between muscle groups (greatest in triceps surae (-11.2% day 28), followed by quadriceps (-9.2% day 28), then hamstrings (-6.5% day 28), then foot dorsiflexors (-3.2% day 28)). Rates of atrophy appear to decrease over time in healthy quadriceps (-6.5% day 14 vs. -9.1% day 28) and triceps surae (-7.8% day 14 vs. -11.2% day 28), and ITU quadriceps (-13.2% day 7 vs. -28.2% day 14). There appears to be variability in the rate of DMA between muscle groups, and more rapid atrophy during the earliest period of immobilization, indicating different mechanisms being dominant at different timepoints. Rates of atrophy are greater amongst critically unwell patients. Overall evidence is limited, and existing data has wide variability in the measures reported. Further work is required to fully characterize the time course of DMA in both health and disease.


Assuntos
Força Muscular , Transtornos Musculares Atróficos , Humanos , Força Muscular/fisiologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Músculo Quadríceps , Músculo Esquelético/patologia , Extremidade Inferior , Transtornos Musculares Atróficos/etiologia
6.
J Physiol ; 600(21): 4753-4769, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36088611

RESUMO

Disuse atrophy, caused by situations of unloading such as limb immobilisation, causes a rapid yet diverging reduction in skeletal muscle function when compared to muscle mass. While mechanistic insight into the loss of mass is well studied, deterioration of muscle function with a focus towards the neural input to muscle remains underexplored. This study aimed to determine the role of motor unit adaptation in disuse-induced neuromuscular deficits. Ten young, healthy male volunteers underwent 15 days of unilateral lower limb immobilisation with intramuscular electromyography (iEMG) bilaterally recorded from the vastus lateralis (VL) during knee extensor contractions normalised to maximal voluntary contraction (MVC), pre and post disuse. Muscle cross-sectional area was determined by ultrasound. Individual MUs were sampled and analysed for changes in motor unit (MU) discharge and MU potential (MUP) characteristics. VL CSA was reduced by approximately 15% which was exceeded by a two-fold decrease of 31% in muscle strength in the immobilised limb, with no change in either parameter in the non-immobilised limb. Parameters of MUP size were reduced by 11% to 24% with immobilisation, while neuromuscular junction (NMJ) transmission instability remained unchanged, and MU firing rate decreased by 8% to 11% at several contraction levels. All adaptations were observed in the immobilised limb only. These findings highlight impaired neural input following immobilisation reflected by suppressed MU firing rate which may underpin the disproportionate reductions of strength relative to muscle size. KEY POINTS: Muscle mass and function decline rapidly in situations of disuse such as bed rest and limb immobilisation. The reduction in muscle function commonly exceeds that of muscle mass, which may be associated with the dysregulation of neural input to muscle. We have used intramuscular electromyography to sample individual motor unit and near fibre potentials from the vastus lateralis following 15 days of unilateral limb immobilisation. Following disuse, the disproportionate loss of muscle strength when compared to size coincided with suppressed motor unit firing rate. These motor unit adaptations were observed at multiple contraction levels and in the immobilised limb only. Our findings demonstrate neural dysregulation as a key component of functional loss following muscle disuse in humans.


Assuntos
Força Muscular , Músculo Esquelético , Humanos , Masculino , Eletromiografia , Músculo Esquelético/fisiologia , Extremidade Inferior , Músculo Quadríceps/fisiologia , Contração Muscular/fisiologia
7.
Nutrients ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145064

RESUMO

The aim of the present study was to evaluate the effect of feeding fava bean (Vicia faba L.) protein (FBP) on resting and post-exercise myofibrillar fractional synthetic rate (myoFSR). In a parallel, double-blind, randomised control trial, sixteen young, healthy recreationally active adults (age = 25 (5) years, body mass = 70 (15) kg, stature = 1.72 (0.11) m, mean (SD)) ingested 0.33 g·kg-1 FBP (n = 8) or a negative control (CON, i.e., EAA-free mixture) (n = 8), immediately after a bout of unilateral knee-extensor resistance exercise. Plasma, saliva, and m. vastus lateralis muscle samples were obtained pre-ingestion and 3 h post-ingestion. MyoFSR was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Pyr-IRMS). Resistance exercise increased myoFSR (p = 0.012). However, ingestion of FBP did not evoke an increase in resting (FBP 29 [-5, 63] vs. CON 12 [-25, 49]%, p = 0.409, mean % change [95% CI]) or post-exercise (FBP 78 [33, 123]% vs. CON 58 [9, 107]%, p = 0.732) myoFSR. Ingestion of 0.33 g·kg-1 of FBP does not appear to enhance resting or post-exercise myoFSR in young, healthy, recreationally active adults.


Assuntos
Treinamento Resistido , Vicia faba , Adulto , Alanina/metabolismo , Deutério/metabolismo , Ingestão de Alimentos , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo
9.
BMC Geriatr ; 22(1): 529, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35761262

RESUMO

BACKGROUND: Reduced cardiorespiratory fitness (CRF) is an independent risk factor for dependency, cognitive impairment and premature mortality. High-intensity interval training (HIIT) is a proven time-efficient stimulus for improving both CRF and other facets of cardiometabolic health also known to decline with advancing age. However, the efficacy of equipment-free, unsupervised HIIT to improve the physiological resilience of older adults is not known. METHODS: Thirty independent, community-dwelling older adults (71(SD: 5) years) were randomised to 4 weeks (12 sessions) equipment-free, supervised (in the laboratory (L-HIIT)) or unsupervised (at home (H-HIIT)) HIIT, or a no-intervention control (CON). HIIT involved 5, 1-minute intervals of a bodyweight exercise each interspersed with 90-seconds recovery. CRF, exercise tolerance, blood pressure (BP), body composition, muscle architecture, circulating lipids and glucose tolerance were assessed at baseline and after the intervention period. RESULTS: When compared to the control group, both HIIT protocols improved the primary outcome of CRF ((via anaerobic threshold) mean difference, L-HIIT: +2.27, H-HIIT: +2.29, both p < 0.01) in addition to exercise tolerance, systolic BP, total cholesterol, non-HDL cholesterol and m. vastus lateralis pennation angle, to the same extent. There was no improvement in these parameters in CON. There was no change in diastolic BP, glucose tolerance, whole-body composition or HDL cholesterol in any of the groups. CONCLUSIONS: This is the first study to show that short-term, time-efficient, equipment-free, HIIT is able to elicit improvements in the CRF of older adults irrespective of supervision status. Unsupervised HIIT may offer a novel approach to improve the physiological resilience of older adults, combating age-associated physiological decline, the rise of inactivity and the additional challenges currently posed by the COVID-19 pandemic. TRIAL REGISTRATION: This study was registered at clinicaltrials.gov and coded: NCT03473990 .


Assuntos
COVID-19 , Aptidão Cardiorrespiratória , Treinamento Intervalado de Alta Intensidade , Idoso , Glucose , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Pandemias
10.
J Cachexia Sarcopenia Muscle ; 13(4): 2005-2016, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35606155

RESUMO

BACKGROUND: We determined the short-term (i.e. 4 days) impacts of disuse atrophy in relation to muscle protein turnover [acute fasted-fed muscle protein synthesis (MPS)/muscle protein breakdown (MPB) and integrated MPS/estimated MPB]. METHODS: Healthy men (N = 9, 22 ± 2 years, body mass index 24 ± 3 kg m-2 ) underwent 4 day unilateral leg immobilization. Vastus lateralis (VL) muscle thickness (MT) and extensor strength and thigh lean mass (TLM) were measured. Bilateral VL muscle biopsies were collected on Day 4 at t = -120, 0, 90, and 180 min to determine integrated MPS, estimated MPB, acute fasted-fed MPS (l-[ring-13 C6 ]-phe), and acute fasted tracer decay rate representative of MPB (l-[15 N]-phe and l-[2 H8 ]-phe). Protein turnover cell signalling was measured by immunoblotting. RESULTS: Immobilization decreased TLM [pre: 7477 ± 1196 g, post: 7352 ± 1209 g (P < 0.01)], MT [pre: 2.67 ± 0.50 cm, post: 2.55 ± 0.51 cm (P < 0.05)], and strength [pre: 260 ± 43 N m, post: 229 ± 37 N m (P < 0.05)] with no change in control legs. Integrated MPS decreased in immob vs. control legs [control: 1.55 ± 0.21% day-1 , immob: 1.29 ± 0.17% day-1 (P < 0.01)], while tracer decay rate (i.e. MPB) (control: 0.02 ± 0.006, immob: 0.015 ± 0.015) and fractional breakdown rate (FBR) remained unchanged [control: 1.44 ± 0.51% day-1 , immob: 1.73 ± 0.35% day-1 (P = 0.21)]. Changes in MT correlated with those in MPS but not FBR. MPS increased in the control leg following feeding [fasted: 0.043 ± 0.012% h-1 , fed: 0.065 ± 0.017% h-1 (P < 0.05)] but not in immob [fasted: 0.034 ± 0.014% h-1 , fed: 0.049 ± 0.023% h-1 (P = 0.09)]. There were no changes in markers of MPB with immob (P > 0.05). CONCLUSIONS: Human skeletal muscle disuse atrophy is driven by declines in MPS, not increases in MPB. Pro-anabolic therapies to mitigate disuse atrophy would likely be more effective than therapies aimed at attenuating protein degradation.


Assuntos
Proteínas Musculares , Transtornos Musculares Atróficos , Biossíntese de Proteínas , Humanos , Perna (Membro) , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Adulto Jovem
11.
Cell Signal ; 96: 110355, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595176

RESUMO

Muscle atrophy and sarcopenia (the term given to the age-related decline in muscle mass and function), influence an individuals risk of falls, frailty, functional decline, and, ultimately, impaired quality of life. Vitamin D deficiency (low serum levels of 25-hydroxyvitamin D (25(OH)D3)) has been reported to impair muscle strength and increase risk of sarcopenia. The mechanisms that underpin the link between low 25(OH)D3 and sarcopenia are yet to be fully understood but several lines of evidence have highlighted the importance of both genomic and non-genomic effects of active vitamin D (1,25-dihydroxyvitamin D (1,25(OH)2D3)) and its nuclear vitamin D receptor (VDR), in skeletal muscle functioning. Studies in vitro have demonstrated a key role for the vitamin D/VDR axis in regulating biological processes central to sarcopenic muscle atrophy, such as proteolysis, mitochondrial function, cellular senescence, and adiposity. The aim of this review is to provide a mechanistic overview of the proposed mechanisms for the vitamin D/VDR axis in sarcopenic muscle atrophy.


Assuntos
Receptores de Calcitriol , Sarcopenia , Humanos , Músculo Esquelético , Atrofia Muscular , Qualidade de Vida , Receptores de Calcitriol/genética , Vitamina D
12.
Sci Rep ; 11(1): 23930, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907264

RESUMO

Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.


Assuntos
Adaptação Fisiológica , Exercício Físico , Contração Muscular , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Transcriptoma , Adulto , Humanos , Masculino
13.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502375

RESUMO

Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ausência de Peso/efeitos adversos , Animais , Caenorhabditis elegans , Ritmo Circadiano/fisiologia , Bases de Dados Genéticas , Drosophila melanogaster , Meio Ambiente Extraterreno , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Elevação dos Membros Posteriores , Camundongos , Modelos Animais , Voo Espacial , Estresse Fisiológico/fisiologia , Transcriptoma/genética
14.
FASEB J ; 35(9): e21830, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342902

RESUMO

Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Doenças Musculares/genética , Biossíntese de Proteínas/genética , Transcriptoma/genética , Adulto , Humanos , Masculino , Força Muscular/genética , Adulto Jovem
15.
Front Physiol ; 12: 653060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017264

RESUMO

OBJECTIVE: Disuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomical function/locations. We aimed to develop an innovative experimental paradigm to investigate Atrophy Resistant tibialis anterior (TA) and Atrophy Susceptible medial gastrocnemius (MG) muscles (aRaS) with a future view of uncovering central mechanisms. METHOD: Seven healthy young men (22 ± 1 year) underwent 15 days unilateral leg immobilisation (ULI). Participants had a single leg immobilised using a knee brace and air-boot to fix the leg (75° knee flexion) and ankle in place. Dual-energy X-ray absorptiometry (DXA), MRI and ultrasound scans of the lower leg were taken before and after the immobilisation period to determine changes in muscle mass. Techniques were developed for conchotome and microneedle TA/MG muscle biopsies following immobilisation (both limbs), and preliminary fibre typing analyses was conducted. RESULTS: TA/MG muscles displayed comparable fibre type distribution of predominantly type I fibres (TA 67 ± 7%, MG 63 ± 5%). Following 15 days immobilisation, MG muscle volume (-2.8 ± 1.4%, p < 0.05) and muscle thickness decreased (-12.9 ± 1.6%, p < 0.01), with a positive correlation between changes in muscle volume and thickness (R2 = 0.31, p = 0.038). Importantly, both TA muscle volume and thickness remained unchanged. CONCLUSION: The use of this unique "aRaS" paradigm provides an effective and convenient means by which to study the mechanistic basis of divergent DA susceptibility in humans, which may facilitate new mechanistic insights, and by extension, mitigation of skeletal muscle atrophy during human DA.

16.
iScience ; 24(4): 102361, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870146

RESUMO

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

17.
Physiol Rep ; 9(6): e14797, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33769716

RESUMO

AIM: Exercise is able to increase both muscle protein synthesis and mitochondrial biogenesis. However, acidosis, which can occur in pathological states as well as during high-intensity exercise, can decrease mitochondrial function, whilst its impact on muscle protein synthesis is disputed. Thus, the aim of this study was to determine the effect of a mild physiological decrease in pH, by administration of ammonium chloride, on myofibrillar and mitochondrial protein synthesis, as well as associated molecular signaling events. METHODS: Male Wistar rats were given either a placebo or ammonium chloride prior to a short interval training session. Rats were killed before exercise, immediately after exercise, or 3 h after exercise. RESULTS: Myofibrillar (p = 0.036) fractional protein synthesis rates was increased immediately after exercise in the soleus muscle of the placebo group, but this effect was absent in the ammonium chloride group. However, in the gastrocnemius muscle NH4 Cl increased myofibrillar (p = 0.044) and mitochondrial protein synthesis (0 h after exercise p = 0.01; 3 h after exercise p = 0.003). This was accompanied by some small differences in protein phosphorylation and mRNA expression. CONCLUSION: This study found ammonium chloride administration immediately prior to a single session of exercise in rats had differing effects on mitochondrial and myofibrillar protein synthesis rates in soleus (type I) and gastrocnemius (type II) muscle in rats.


Assuntos
Acidose/metabolismo , Cloreto de Amônio/administração & dosagem , Proteínas Mitocondriais/biossíntese , Proteínas Musculares/biossíntese , Miofibrilas/metabolismo , Condicionamento Físico Animal , Animais , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miofibrilas/efeitos dos fármacos , Ratos Wistar
18.
J Physiol ; 599(1): 193-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33006148

RESUMO

KEY POINTS: Masters athletes maintain high levels of activity into older age and allow an examination of the effects of aging dissociated from the effects of increased sedentary behaviour. Evidence suggests masters athletes are more successful at motor unit remodelling, the reinnervation of denervated fibres acting to preserve muscle fibre number, but little data are available in females. Here we used intramuscular electromyography to demonstrate that motor units sampled from the tibialis anterior show indications of remodelling from middle into older age and which does not differ between males and females. The age-related trajectory of motor unit discharge characteristic differs according to sex, with female athletes progressing to a slower firing pattern that was not observed in males. Our findings indicate motor unit remodelling from middle to older age occurs to a similar extent in male and female athletes, with discharge rates progressively slowing in females only. ABSTRACT: Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, although the majority of studies have focused on males, with little available data on female athletes. Functional assessments of strength, balance and motor control were performed in 30 masters athletes (16 male) aged 44-83 years. Intramuscular needle electrodes were used to sample individual motor unit potentials (MUPs) and near-fibre MUPs in the tibialis anterior (TA) during isometric contractions at 25% maximum voluntary contraction, and used to determine discharge characteristics (firing rate, variability) and biomarkers of peripheral MU remodelling (MUP size, complexity, stability). Multilevel mixed-effects linear regression models examined effects of age and sex. All aspects of neuromuscular function deteriorated with age (P < 0.05) with no age × sex interactions, although males were stronger (P < 0.001). Indicators of MU remodelling also progressively increased with age to a similar extent in both sexes (P < 0.05), whilst MU firing rate progressively decreased with age in females (p = 0.029), with a non-significant increase in males (p = 0.092). Masters athletes exhibit age-related declines in neuromuscular function that are largely equal across males and females. Notably, they also display features of MU remodelling with advancing age, probably acting to reduce muscle fibre loss. The age trajectory of MU firing rate assessed at a single contraction level differed between sexes, which may reflect a greater tendency for females to develop a slower muscle phenotype.


Assuntos
Neurônios Motores , Músculo Esquelético , Adulto , Idoso , Idoso de 80 Anos ou mais , Atletas , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Fibras Musculares Esqueléticas
19.
J Physiol ; 599(3): 963-979, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258480

RESUMO

KEY POINTS: Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR-knockdown mitochondrial function and related gene-set expression is impaired. In vitro VDR knockdown induces myogenic dysregulation occurring through impaired differentiation. These results highlight the autonomous role the VDR has within skeletal muscle mass regulation. ABSTRACT: Vitamin D deficiency is estimated to affect ∼40% of the world's population and has been associated with impaired muscle maintenance. Vitamin D exerts its actions through the vitamin D receptor (VDR), the expression of which was recently confirmed in skeletal muscle, and its down-regulation is linked to reduced muscle mass and functional decline. To identify potential mechanisms underlying muscle atrophy, we studied the impact of VDR knockdown (KD) on mature skeletal muscle in vivo, and myogenic regulation in vitro in C2C12 cells. Male Wistar rats underwent in vivo electrotransfer (IVE) to knock down the VDR in hind-limb tibialis anterior (TA) muscle for 10 days. Comprehensive metabolic and physiological analysis was undertaken to define the influence loss of the VDR on muscle fibre composition, protein synthesis, anabolic and catabolic signalling, mitochondrial phenotype and gene expression. Finally, in vitro lentiviral transfection was used to induce sustained VDR-KD in C2C12 cells to analyse myogenic regulation. Muscle VDR-KD elicited atrophy through a reduction in total protein content, resulting in lower myofibre area. Activation of autophagic processes was observed, with no effect upon muscle protein synthesis or anabolic signalling. Furthermore, RNA-sequencing analysis identified systematic down-regulation of multiple mitochondrial respiration-related protein and genesets. Finally, in vitro VDR-knockdown impaired myogenesis (cell cycling, differentiation and myotube formation). Together, these data indicate a fundamental regulatory role of the VDR in the regulation of myogenesis and muscle mass, whereby it acts to maintain muscle mitochondrial function and limit autophagy.


Assuntos
Receptores de Calcitriol , Deficiência de Vitamina D , Animais , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Ratos , Ratos Wistar , Receptores de Calcitriol/genética , Vitamina D
20.
Nutrients ; 12(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883033

RESUMO

Dietary protein is critical for the maintenance of musculoskeletal health, whereappropriate intake (i.e., source, dose, timing) can mitigate declines in muscle and bone mass and/orfunction. Animal-derived protein is a potent anabolic source due to rapid digestion and absorptionkinetics stimulating robust increases in muscle protein synthesis and promoting bone accretion andmaintenance. However, global concerns surrounding environmental sustainability has led to anincreasing interest in plant- and collagen-derived protein as alternative or adjunct dietary sources.This is despite the lower anabolic profile of plant and collagen protein due to the inferior essentialamino acid profile (e.g., lower leucine content) and subordinate digestibility (versus animal). Thisreview evaluates the efficacy of animal-, plant- and collagen-derived proteins in isolation, and asprotein blends, for augmenting muscle and bone metabolism and health in the context of ageing,exercise and energy restriction.


Assuntos
Proteínas Animais da Dieta/farmacocinética , Osso e Ossos/efeitos dos fármacos , Proteínas Alimentares/farmacocinética , Músculo Esquelético/efeitos dos fármacos , Proteínas de Vegetais Comestíveis/farmacocinética , Envelhecimento/metabolismo , Animais , Remodelação Óssea/efeitos dos fármacos , Restrição Calórica , Colágeno/química , Exercício Físico/fisiologia , Humanos , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...