Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 43(12): 3324-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23963575

RESUMO

Neutrophils are essential players in acute inflammatory responses. Upon stimulation, neutrophils activate NADPH oxidase, generating an array of reactive oxygen species (ROS). Interleukin-1 beta (IL-1ß) is a major proinflammatory cytokine synthesized as a precursor that has to be proteolytically processed to become biologically active. The role of ROS in IL-1ß processing is still controversial and has not been previously studied in neutrophils. We report here that IL-1ß processing in human neutrophils is dependent on caspase-1 and on the serine proteases elastase and/or proteinase 3. NADPH oxidase deficient neutrophils activated caspase-1 and did not exhibit differences in NALP3 expression, indicating that ROS are neither required for inflammasome activation nor for its priming, as has been reported for macrophages. Strikingly, ROS exerted opposite effects on the processing and secretion of IL-1ß; whereas ROS negatively controlled caspase-1 activity, as reported in mononuclear phagocytes, ROS were found to be necessary for the exportation of mature IL-1ß out of the cell, a role never previously described. The complex ROS-mediated regulation of neutrophil IL-1ß secretion might constitute a physiological mechanism to control IL-1ß-dependent inflammatory processes where neutrophils play a crucial role.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Linhagem Celular , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Mieloblastina/genética , Mieloblastina/imunologia , Mieloblastina/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/metabolismo
2.
FASEB J ; 26(5): 1982-94, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22286690

RESUMO

Angiotensin II (AngII), the main effector peptide of the renin-angiotensin system (RAS), participates in multiple biological processes, including cell growth, apoptosis, and tissue remodeling. Since AngII activates, in different cell types, signal transducing pathways that are critical for mammary gland postlactational regression, we investigated the role of the RAS during this process. We found that exogenous administration of AngII in mammary glands of lactating Balb/c mice induced epithelium apoptosis [2.9±0.5% (control) vs. 9.6±1.1% (AngII); P < 0.001] and activation of the proapoptotic factor STAT3, an effect inhibited by irbesartan, an AT(1) receptor blocker. Subsequently, we studied the expression kinetics of RAS components during involution. We found that angiotensin-converting enzyme (ACE) mRNA expression peaked 6 h after weaning (5.7-fold; P<0.01), while induction of angiotensinogen and AT(1) and AT(2) receptors expression was detected 96 h after weaning (6.2-, 10-, and 6.2-fold increase, respectively; P<0.01). To assess the role of endogenously generated AngII, mice were treated with losartan, an AT(1) receptor blocker, during mammary involution. Mammary glands from losartan-treated mice showed activation of the survival factors AKT and BCL-(XL), significantly lower LIF and TNF-α mRNA expression (P<0.05), reduced apoptosis [12.1±2.1% (control) vs. 4.8±0.7% (losartan); P<0.001] and shedding of epithelial cells, inhibition of MMP-9 activity in a dose-dependent manner (80%; P<0.05; with losartan IC(50) value of 6.9 mg/kg/d] and lower collagen deposition and adipocyte invasion causing a delayed involution compared to vehicle-treated mice. Furthermore, mammary glands of forced weaned AT(1A)- and/or AT(1B)-deficient mice exhibited retarded apoptosis of epithelial cells [6.3±0.95% (WT) vs. 3.3±0.56% (AT(1A)/AT(1B) DKO); P<0.05] with remarkable delayed postlactational regression compared to wild-type animals. Taken together, these results strongly suggest that AngII, via the AT(1) receptor, plays a major role in mouse mammary gland involution identifying a novel role for the RAS. angiotensin system.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Marcação In Situ das Extremidades Cortadas , Lactação , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Transdução de Sinais
3.
Biores Open Access ; 1(5): 260-3, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23515318

RESUMO

Delivery inside the cells is essential for practical application of antisense technologies. The hybrid locked nucleic acid (LNA)/DNA CAAGTACTGTTCCACCA (LNA residues are underlined) was labeled by conjugation to Alexa Fluor 488 (fLNA/DNA) and tested to determine its ability to penetrate Escherichia coli cells and reach the cytoplasm. Flow cytometry analysis showed that the fLNA/DNA was associated with 14% of cells from a stationary phase culture, while association with a labeled isosequential oligodeoxynucleotide was negligible. Laser scanning confocal microscopy confirmed that the fLNA/DNA was located inside the cytoplasm.

4.
Lab Invest ; 90(7): 1049-59, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20368700

RESUMO

Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella typhimurium at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IkappaBalpha degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-kappaB activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-kappaB activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. typhimurium. Both a wild-type and an aflagellate mutant S. typhimurium strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-kappaB. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria.


Assuntos
Apoptose/efeitos dos fármacos , Flagelina/farmacologia , Neutrófilos/efeitos dos fármacos , Caspase 3/metabolismo , Sobrevivência Celular , Células Cultivadas , Flagelos/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides , NF-kappa B/metabolismo , Neutrófilos/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia
5.
J Immunol ; 184(11): 6386-95, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20421641

RESUMO

We previously demonstrated that extracellular bacterial DNA activates neutrophils through a CpG- and TLR9-independent mechanism. Biofilms are microbial communities enclosed in a polymeric matrix that play a critical role in the pathogenesis of many infectious diseases. Because extracellular DNA is a key component of biofilms of different bacterial species, the aim of this study was to determine whether it plays a role in the ability of biofilms to induce human neutrophil activation. We found that degradation of matrix extracellular DNA with DNase I markedly reduced the capacity of Pseudomonas aeruginosa biofilms to induce the release of the neutrophil proinflammatory cytokines IL-8 and IL-1beta (>75%); reduced the upregulation of neutrophil activation markers CD18, CD11b, and CD66b (p < 0.001); reduced the number of bacteria phagocytosed per neutrophil contacting the biofilm; and reduced the production of neutrophil extracellular traps. Consistent with these findings, we found that biofilms formed by the lasI rhlI P. aeruginosa mutant strain, exhibiting a very low content of matrix extracellular DNA, displayed a lower capacity to stimulate the release of proinflammatory cytokines by neutrophils, which was not decreased further by DNase I treatment. Together, our findings support that matrix extracellular DNA is a major proinflammatory component of P. aeruginosa biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Pseudomonas aeruginosa/fisiologia , Citocinas/biossíntese , Líquido Extracelular/química , Líquido Extracelular/microbiologia , Humanos , Microscopia Confocal , Neutrófilos/metabolismo
6.
Mol Immunol ; 46(1): 37-44, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18701168

RESUMO

We have previously demonstrated that bacterial DNA induces neutrophil activation through a CpG- and TLR9-independent but MyD88-dependent-pathway. In this study we determined that GM-CSF enhances the activation of neutrophils by bacterial DNA. Granulocyte-macrophage colony-stimulating factor increased IL-8 and IL-1beta secretion, and CD11b-upregulation induced by single-stranded bacterial DNA. It also enhanced neutrophil IL-8 production induced by double-stranded bacterial DNA, methylated single-stranded DNA, plasmid DNA, and phosphorothioated-CpG and non-CpG-oligodeoxynucleotides. Together these observations indicated that GM-CSF enhances neutrophil responses triggered by bacterial DNA in a CpG-independent fashion. We also found that GM-CSF enhanced the activation of the MAPKs p38 and ERK1/2 induced by bacterial DNA. Moreover, the pharmacological inhibition of these pathways significantly diminished GM-CSF ability to increase neutrophil activation by bacterial DNA. Finally, we observed that GM-CSF was unable to increase the activation of MyD88(-/-) neutrophils by bacterial DNA. Our findings suggest that GM-CSF modulates the CpG-independent, MyD88-dependent neutrophil response to bacterial DNA, by increasing the activation of the MAPKs p38 and ERK1/2.


Assuntos
Ilhas de CpG/genética , DNA Bacteriano/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Animais , Antígeno CD11b/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-8/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Neutrófilos/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Lab Invest ; 88(9): 926-37, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18626469

RESUMO

Bacterial DNA activates neutrophils through a CpG- and TLR9-independent mechanism. Neutrophil activation does not require DNA internalization, suggesting that it results from the interaction of bacterial DNA with a neutrophil surface receptor. The aim of this study was to characterize the interaction of bacterial DNA with the neutrophil surface. Bacterial DNA binding showed saturation and was inhibited by unlabeled DNA but not by other polyanions like yeast tRNA and poly-A. Resembling the conditions under which bacterial DNA triggers neutrophil activation, binding was not modified in the presence or absence of calcium, magnesium or serum. Treatment of neutrophils with proteases not only dramatically reduced bacterial DNA binding but also inhibited neutrophil activation induced by bacterial DNA. Experiments performed with DNA samples of different lengths obtained after digestion of bacterial DNA with DNase showed that only DNA fragments greater than approximately 170-180 nucleotides competed bacterial DNA binding and retained the ability to trigger cell activation. Treatment of neutrophils with chemoattractants or conventional agonists significantly increased bacterial DNA binding. Moreover, neutrophils that underwent transmigration through human endothelial cell monolayers even in the absence of chemoattractants, exhibited higher binding levels of bacterial DNA. Together, our findings provide evidence that binding of bacterial DNA to neutrophils is a receptor-mediated process that conditions the ability of DNA to trigger cell activation. We speculate that neutrophil recognition of bacterial DNA might be modulated by the balance of agonists present at inflammatory foci. This effect might be relevant in bacterial infections with a biofilm etiology, in which extracellular DNA could function as a potent neutrophil agonist.


Assuntos
DNA Bacteriano/metabolismo , Neutrófilos/metabolismo , Sequência de Bases , Biofilmes , Células Cultivadas , Primers do DNA , Escherichia coli/genética , Humanos
8.
J Immunol ; 177(6): 4037-46, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16951367

RESUMO

We have previously shown that bacterial DNA activates human neutrophils in a CpG-independent manner. In this study, we have characterized the signaling pathways involved in the activation mechanism. We found that p38 MAPK, ERK1/2, and JNK pathways, as well as the PI3K/Akt pathway, are activated by bacterial DNA. We also determined that bacterial DNA induces NF-kappaB and AP-1 activation. When analyzing the role of these pathways on neutrophil functions, we observed that up-regulation of CD11b triggered by bacterial DNA was decreased by pharmacological inhibitors of the p38 MAPK, ERK1/2, and JNK, whereas stimulation of IL-8 release was dependent on p38, ERK1/2, and NF-kappaB. Moreover, we found that IL-8 production was markedly enhanced by inhibition of JNK, suggesting that this pathway negatively modulates NF-kappaB-dependent transcription. We also observed that bacterial DNA stimulated IL-1R-associated kinase-1 kinase activity and its partial degradation. Finally, we determined that bacterial DNA stimulated CD11b up-regulation in TLR9(-/-) but not in MyD88(-/-) mouse neutrophils, supporting that bacterial DNA induces neutrophil activation through a TLR9-independent and MyD88-dependent pathway.


Assuntos
DNA Bacteriano/fisiologia , Sistema de Sinalização das MAP Quinases/imunologia , Neutrófilos/enzimologia , Neutrófilos/microbiologia , Animais , Células Cultivadas , Escherichia coli/genética , Escherichia coli/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Neutrófilos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA