Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997609

RESUMO

Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.

2.
Cells ; 11(12)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741068

RESUMO

PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9-25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.


Assuntos
Excitabilidade Cortical , Epilepsia , Animais , Caderinas/genética , Epilepsia/genética , Feminino , Masculino , Camundongos , Mosaicismo , Protocaderinas
3.
Brain Commun ; 4(3): fcac091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528232

RESUMO

Protocadherin 19 gene-related epilepsy or protocadherin 19 clustering epilepsy is an infantile-onset epilepsy syndrome characterized by psychiatric (including autism-related), sensory, and cognitive impairment of varying degrees. Protocadherin 19 clustering epilepsy is caused by X-linked protocadherin 19 protein loss of function. Due to random X-chromosome inactivation, protocadherin 19 clustering epilepsy-affected females present a mosaic population of healthy and protocadherin 19-mutant cells. Unfortunately, to date, no current mouse model can fully recapitulate both the brain histological and behavioural deficits present in people with protocadherin 19 clustering epilepsy. Thus, the search for a proper understanding of the disease and possible future treatment is hampered. By inducing a focal mosaicism of protocadherin 19 expression using in utero electroporation in rats, we found here that protocadherin 19 signalling in specific brain areas is implicated in neuronal migration, heat-induced epileptic seizures, core/comorbid behaviours related to autism and cognitive function.

4.
Cell Rep ; 39(8): 110857, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613587

RESUMO

Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus. We demonstrate that PCDH19 CTF associates with chromatin and with the chromatin remodeler lysine-specific demethylase 1 (LSD1) and regulates expression of immediate-early genes (IEGs). Our results are consistent with a model whereby PCDH19 favors maintenance of neuronal homeostasis via negative feedback regulation of IEG expression and provide a key to interpreting PCDH19-related hyperexcitability.


Assuntos
Caderinas , Epilepsia , Genes Precoces , Protocaderinas , Caderinas/genética , Caderinas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Regulação da Expressão Gênica , Humanos , Protocaderinas/genética , Protocaderinas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
6.
Neurobiol Dis ; 148: 105189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227491

RESUMO

Mutations in the TM4SF2 gene, which encodes TSPAN7, cause a severe form of intellectual disability (ID) often comorbid with autism spectrum disorder (ASD). Recently, we found that TM4SF2 loss in mice affects cognition. Here, we report that Tm4sf2-/y mice, beyond an ID-like phenotype, display altered sociability, increased repetitive behaviors, anhedonic- and depressive-like states. Cognition relies on the integration of information from several brain areas. In this context, the lateral habenula (LHb) is strategically positioned to coordinate the brain regions involved in higher cognitive functions. Furthermore, in Tm4sf2-/y mice we found that LHb neurons present hypoexcitability, aberrant neuronal firing pattern and altered sodium and potassium voltage-gated ion channels function. Interestingly, we also found a reduced expression of voltage-gated sodium channel and a hyperactivity of the PKC-ERK pathway, a well-known modulator of ion channels activity, which might explain the functional phenotype showed by Tm4sf2-/y mice LHb neurons. These findings support Tm4sf2-/y mice as useful in modeling some ASD-like symptoms. Additionally, we can speculate that LHb functional alteration in Tm4sf2-/y mice might play a role in the disease pathophysiology.


Assuntos
Habenula/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Anedonia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Depressão , Modelos Animais de Doenças , Habenula/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteína Quinase C/metabolismo , Comportamento Social , Comportamento Estereotipado
7.
Cells ; 9(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352832

RESUMO

During brain development, neurons need to form the correct connections with one another in order to give rise to a functional neuronal circuitry. Mistakes during this process, leading to the formation of improper neuronal connectivity, can result in a number of brain abnormalities and impairments collectively referred to as neurodevelopmental disorders. Cell adhesion molecules (CAMs), present on the cell surface, take part in the neurodevelopmental process regulating migration and recognition of specific cells to form functional neuronal assemblies. Among CAMs, the members of the protocadherin (PCDH) group stand out because they are involved in cell adhesion, neurite initiation and outgrowth, axon pathfinding and fasciculation, and synapse formation and stabilization. Given the critical role of these macromolecules in the major neurodevelopmental processes, it is not surprising that clinical and basic research in the past two decades has identified several PCDH genes as responsible for a large fraction of neurodevelopmental disorders. In the present article, we review these findings with a focus on the non-clustered PCDH sub-group, discussing the proteins implicated in the main neurodevelopmental disorders.


Assuntos
Caderinas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo , Motivos de Aminoácidos , Animais , Axônios/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Proliferação de Células , Dendritos/metabolismo , Humanos , Família Multigênica , Mutação , Neuritos/metabolismo , Neurogênese , Neurônios/metabolismo , Isoformas de Proteínas , Protocaderinas , Distribuição Tecidual
8.
Mol Neurobiol ; 57(12): 5336-5351, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880860

RESUMO

PCDH19 encodes for protocadherin-19 (PCDH19), a cell-adhesion molecule of the cadherin superfamily preferentially expressed in the brain. PCDH19 mutations cause a neurodevelopmental syndrome named epileptic encephalopathy, early infantile, 9 (EIEE9) characterized by seizures associated with cognitive and behavioral deficits. We recently reported that PCDH19 binds the alpha subunits of GABAA receptors (GABAARs), modulating their surface availability and miniature inhibitory postsynaptic currents (mIPSCs). Here, we investigated whether PCDH19 regulatory function on GABAARs extends to the extrasynaptic receptor pool that mediates tonic current. In fact, the latter shapes neuronal excitability and network properties at the base of information processing. By combining patch-clamp recordings in whole-cell and cell-attached configurations, we provided a functional characterization of primary hippocampal neurons from embryonic rats of either sex expressing a specific PCDH19 short hairpin (sh)RNA. We first demonstrated that PCDH19 downregulation reduces GABAAR-mediated tonic current, evaluated by current shift and baseline noise analysis. Next, by single-channel recordings, we showed that PCDH19 regulates GABAARs kinetics without altering their conductance. In particular, GABAARs of shRNA-expressing neurons preferentially exhibit brief openings at the expense of long ones, thus displaying a flickering behavior. Finally, we showed that PCDH19 downregulation reduces the rheobase and increases the frequency of action potential firing, thus indicating neuronal hyperexcitability. These findings establish PCDH19 as a critical determinant of GABAAR-mediated tonic transmission and GABAARs gating, and provide the first mechanistic insights into PCDH19-related hyperexcitability and comorbidities.


Assuntos
Potenciais de Ação , Caderinas/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Hipocampo/patologia , Inibição Neural/fisiologia , Neurônios/patologia , Receptores de GABA-A/metabolismo , Animais , Regulação para Baixo , Cinética , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley
9.
Mol Neurobiol ; 57(1): 393-407, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31364026

RESUMO

Ten to 20% of western countries population suffers from major depression disorder (MDD). Stressful life events represent the main environmental risk factor contributing to the onset of MDD and other stress-related neuropsychiatric disorders. In this regard, investigating brain physiology of stress response underlying the remarkable individual variability in terms of behavioral outcome may uncover stress-vulnerability pathways as a source of candidate targets for conceptually new antidepressant treatments. Serum response factor (SRF) has been addressed as a stress transducer via promoting inherent experience-induced Immediate Early Genes (IEGs) expression in neurons. However, in resting conditions, SRF also represents a transcriptional repressor able to assemble the core LSD1/CoREST/HDAC2 corepressor complex, including demethylase and deacetylase activities. We here show that dominant negative SRF splicing isoform lacking most part of the transactivation domain, namely SRFΔ5, owes its transcriptional repressive behavior to the ability of assembling LSD1/CoREST/HDAC2 corepressor complex meanwhile losing its affinity for transcription-permissive cofactor ELK1. SRFΔ5 is highly expressed in the brain and developmentally regulated. In the light of its activity as negative modulator of dendritic spine density, SRFΔ5 increase along with brain maturation suggests a role in synaptic pruning. Upon acute psychosocial stress, SRFΔ5 isoform transiently increases its levels. Remarkably, when stress is chronically repeated, a different picture occurs where SRF protein becomes stably upregulated in vulnerable mice but not in resilient animals. These data suggest a role for SRFΔ5 that is restricted to acute stress response, while positive modulation of SRF during chronic stress matches the criteria for stress-vulnerability hallmark.


Assuntos
Processamento Alternativo/genética , Proteínas Correpressoras/metabolismo , Histona Desmetilases/metabolismo , Plasticidade Neuronal , Fator de Resposta Sérica/genética , Estresse Fisiológico , Animais , Forma Celular , Espinhas Dendríticas/metabolismo , Células HeLa , Hipocampo/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fator de Resposta Sérica/metabolismo , Estresse Psicológico/patologia
10.
Dev Neurobiol ; 79(1): 75-84, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431232

RESUMO

PCDH19 is considered one of the most clinically relevant genes in epilepsy, second only to SCN1A. To date about 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. Although little is known about the physiological role of PCDH19 and the pathogenic mechanisms that lead to EIEE9, in this review, we will present latest researches focused on these aspects, underlining protein expression, its known functions and the mechanisms by which the protein acts, with particular interest in PCDH19 extracellular and intracellular roles in neurons.


Assuntos
Caderinas/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Espasmos Infantis/genética , Animais , Humanos , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/complicações , Protocaderinas , Espasmos Infantis/complicações
11.
Hum Mol Genet ; 27(6): 1027-1038, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360992

RESUMO

The PCDH19 gene (Xp22.1) encodes the cell-adhesion protein protocadherin-19 (PCDH19) and is responsible for a neurodevelopmental pathology characterized by female-limited epilepsy, cognitive impairment and autistic features, the pathogenic mechanisms of which remain to be elucidated. Here, we identified a new interaction between PCDH19 and GABAA receptor (GABAAR) alpha subunits in the rat brain. PCDH19 shRNA-mediated downregulation reduces GABAAR surface expression and affects the frequency and kinetics of miniature inhibitory postsynaptic currents (mIPSCs) in cultured hippocampal neurons. In vivo, PCDH19 downregulation impairs migration, orientation and dendritic arborization of CA1 hippocampal neurons and increases rat seizure susceptibility. In sum, these data indicate a role for PCDH19 in GABAergic transmission as well as migration and morphological maturation of neurons.


Assuntos
Caderinas/metabolismo , Moduladores GABAérgicos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Animais , Células COS , Chlorocebus aethiops , Epilepsia/genética , Feminino , Células HEK293 , Hipocampo/citologia , Humanos , Potenciais Pós-Sinápticos Inibidores , Plasticidade Neuronal , Protocaderinas , Ratos , Ratos Sprague-Dawley , Convulsões/metabolismo
12.
Cereb Cortex ; 27(11): 5369-5384, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968657

RESUMO

Intellectual disability affects 2-3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1-GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1-GluA2 binding restored synaptic function in Tm4sf2-/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2-/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Psicotrópicos/farmacologia , Receptores de AMPA/metabolismo , Regulação Alostérica , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Deficiência Intelectual/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
13.
Nat Commun ; 8: 14536, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262662

RESUMO

Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy.


Assuntos
Hipocampo/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Transmissão Sináptica/genética , Animais , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/ultraestrutura , Embrião de Mamíferos , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Regulação da Expressão Gênica , Células HEK293 , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Injeções Intraventriculares , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural , Neurogênese/genética , Neurônios/patologia , Neurônios/ultraestrutura , Cultura Primária de Células , Ratos , Ratos Wistar , Receptor Cross-Talk , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura
14.
Proc Natl Acad Sci U S A ; 113(13): 3651-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976584

RESUMO

Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos Deletion or reduction of neuro LSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO)mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.


Assuntos
Emoções/fisiologia , Genes Precoces , Histona Desmetilases/fisiologia , Processamento Alternativo , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Epigênese Genética , Genes fos , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Plasticidade Neuronal , Fenótipo , Fator de Resposta Sérica/fisiologia , Estresse Psicológico , Transcrição Gênica
15.
Front Mol Neurosci ; 9: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834556

RESUMO

Myosin IXa (Myo9a) is a motor protein that is highly expressed in the brain. However, the role of Myo9a in neurons remains unknown. Here, we investigated Myo9a function in hippocampal synapses. In rat hippocampal neurons, Myo9a localizes to the postsynaptic density (PSD) and binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit. Myo9a(+/-) mice displayed a thicker PSD and increased levels of PSD95 and surface AMPAR expression. Furthermore, synaptic transmission, long-term potentiation (LTP) and cognitive functions were impaired in Myo9a(+/-) mice. Together, these results support a key role for Myo9a in controlling the molecular structure and function of hippocampal synapses.

16.
Nat Commun ; 6: 6504, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25784538

RESUMO

RAB39B is a member of the RAB family of small GTPases that controls intracellular vesicular trafficking in a compartment-specific manner. Mutations in the RAB39B gene cause intellectual disability comorbid with autism spectrum disorder and epilepsy, but the impact of RAB39B loss of function on synaptic activity is largely unexplained. Here we show that protein interacting with C-kinase 1 (PICK1) is a downstream effector of GTP-bound RAB39B and that RAB39B-PICK1 controls trafficking from the endoplasmic reticulum to the Golgi and, hence, surface expression of GluA2, a subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). The role of AMPARs in synaptic transmission varies depending on the combination of subunits (GluA1, GluA2 and GluA3) they incorporate. RAB39B downregulation in mouse hippocampal neurons skews AMPAR composition towards non GluA2-containing Ca(2+)-permeable forms and thereby alters synaptic activity, specifically in hippocampal neurons. We posit that the resulting alteration in synaptic function underlies cognitive dysfunction in RAB39B-related disorders.


Assuntos
Deficiência Intelectual/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Eletrofisiologia , Regulação da Expressão Gênica , Glutationa Transferase/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Guanosina Trifosfato/química , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Mutação , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Transmissão Sináptica , Técnicas do Sistema de Duplo-Híbrido
17.
J Neurosci ; 34(27): 9088-95, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24990929

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein implicated in RNA metabolism. Here, we investigated the role of hnRNP K in synapse function. We demonstrated that hnRNP K regulates dendritic spine density and long-term potentiation (LTP) in cultured hippocampal neurons from embryonic rats. LTP requires the extracellular signal-regulated kinase (ERK)1/2-mediated phosphorylation and cytoplasmic accumulation of hnRNP K. Moreover, hnRNP K knockdown prevents ERK cascade activation and GluA1-S845 phosphorylation and surface delivery, which are essential steps for LTP. These findings establish hnRNP K as a new critical regulator of synaptic transmission and plasticity in hippocampal neurons.


Assuntos
Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Ribonucleoproteínas/fisiologia , Transmissão Sináptica/fisiologia , Animais , Sinalização do Cálcio , Células Cultivadas , Dendritos/ultraestrutura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Neurônios/ultraestrutura , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Receptores de AMPA/metabolismo , Ribonucleoproteínas/antagonistas & inibidores , Ribonucleoproteínas/genética , Transfecção
18.
Neuroscientist ; 19(5): 541-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23820068

RESUMO

X-linked intellectual disability (XLID) affects 1% to 3% of the population. XLID subsumes several heterogeneous conditions, all of which are marked by cognitive impairment and reduced adaptive skills. XLID arises from mutations on the X chromosome; to date, 102 XLID genes have been identified. The proteins encoded by XLID genes are involved in higher brain functions, such as cognition, learning and memory, and their molecular role is the subject of intense investigation. Here, we review recent findings concerning a representative group of XLID proteins: the fragile X mental retardation protein; methyl-CpG-binding protein 2 and cyclin-dependent kinase-like 5 proteins, which are involved in Rett syndrome; the intracellular signaling molecules of the Rho guanosine triphosphatases family; and the class of cell adhesion molecules. We discuss how XLID gene mutations affect the structure and function of synapses.


Assuntos
Genes Ligados ao Cromossomo X/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Mutação/genética , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Síndrome de Rett/genética
19.
Cell Mol Life Sci ; 70(23): 4411-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23475111

RESUMO

Glutamate ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate most fast excitatory synaptic transmission in the central nervous system. The content and composition of AMPARs in postsynaptic membranes (which determine synaptic strength) are dependent on the regulated trafficking of AMPAR subunits in and out of the membranes. AMPAR trafficking is a key mechanism that drives nascent synapse development, and is the main determinant of both Hebbian and homeostatic plasticity in mature synapses. Hebbian plasticity seems to be the biological substrate of at least some forms of learning and memory; while homeostatic plasticity (also known as synaptic scaling) keeps neuronal circuits stable by maintaining changes within a physiological range. In this review, we examine recent findings that provide further understanding of the role of AMPAR trafficking in synapse maturation, Hebbian plasticity, and homeostatic plasticity.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Homeostase/fisiologia , Humanos , Modelos Neurológicos , Transporte Proteico/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo
20.
Bioarchitecture ; 2(3): 95-97, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22880149

RESUMO

Tetraspanins regulate the signaling, trafficking and biosynthetic processing of associated proteins, and may link the extracellular domain of α-chain integrins with intracellular signaling molecules, including PI4K and PKC, both of which regulate cytoskeletal architecture. We showed that TSPAN7, a member of tetraspannin-family, promotes filopodia and dendritic spine formation in cultured hippocampal neurons, and is required for spine stability and normal synaptic transmission. TSPAN7 directly interacts with the PDZ domain of protein interacting with C kinase 1 (PICK1), and associates with AMPAR subunit GluA2 and ß1-integrin. TSPAN7 regulates PICK1 and GluA2/3 association, and AMPA receptor trafficking. These findings identify TSPAN7 as a key player in the morphological and functional maturation of glutamatergic synapses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...