Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 39, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747234

RESUMO

BACKGROUND: One of the main challenges of wound healing is infection with multi-drug resistant (MDR) bacteria such as Staphylococcus aureus. The spectrum of antibiotics used to treat them is declining; thus, there is a need for alternatives. Our study was designed to evaluate the antimicrobial properties of honey, its pharmacokinetics (ADMET) properties and in-silico analysis of its bioactive compounds against dihydropteroate synthase of S. aureus using trimethoprim as control. METHODS: Standard protocols were employed in collection and preparation of samples, generation of canonical strings, and conduction of microbiological analyses. Bioactive compounds' ADMET properties were evaluated using the SWISSADME and the MCULE toxicity checker tools. The MCULE one-click docking tool was used in carrying out the dockings. RESULTS: The gas chromatography-mass spectrophotometry revealed twenty (20) bioactive compounds and was dominated by sugars (> 60%). We isolated a total of 47 S. aureus isolates from the wound samples. At lower concentrations, resistance to trimethoprim (95.74 to 100.00%) was higher than honey (70.21 to 96.36%). Only seven (7) isolates meet Lipinski's rule of five and ADMET properties. The docking scores of the bioactive compounds ranged from -3.3 to -4.6 while that of trimethoprim was -6.1, indicating better binding or interaction with the dihydropteroate synthase. The bioactive compounds were not substrates to P450 cytochrome enzymes (CYP1A2, CYP2CI9 and CYP2D6) and p-glycoprotein, indicating better gastrointestinal tract (GIT) absorption. CONCLUSION: The favourable docking properties shown by the bioactive compounds suggest they could be lead compounds for newer antimetabolites for management of MDR S. aureus.


Assuntos
Mel , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Di-Hidropteroato Sintase/química , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Trimetoprima
2.
Heliyon ; 9(2): e13457, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36820045

RESUMO

Heavy metal co-resistance with antibiotics appears to be synergistic in bacterial isolates via similar mechanisms. This synergy has the potential to amplify antibiotics resistance genes in the environment which can be transferred into clinical settings. The aim of this study was to assess the co-resistance of heavy metals with antibiotics in bacteria from dumpsite in addition to physicochemical analysis. Sample collection, physicochemical analysis, and enumeration of total heterotrophic bacteria counts (THBC) were all carried out using standard existing protocols. Identified bacteria isolates were subjected to antibiotics sensitivity test using the Kirby Bauer disc diffusion technique and the resulting multidrug resistant (MDR) isolates were subjected to heavy metal tolerance test using agar dilution technique with increasing concentrations (50, 100, 150, 200 and to 250 µg/ml) of our study heavy metals. THBC ranged from 6.68 to 7.92 × 105 cfu/g. Out of the 20 isolates subjected to antibiotics sensitivity, 50% (n = 10) showed multiple drug resistance and these were B. subtilis, B. cereus, C. freundii, P. aeruginosa, Enterobacter sp, and E. coli (n = 5). At the lowest concentration (50 µg/ml), all the MDR isolates tolerated all the heavy metals, but at 250 µg/ml, apart from cadmium and lead, all test isolates were 100% sensitive to chromium, vanadium and cobalt. The control isolate was only resistant to cobalt and chromium at 50 µg/ml, but sensitive to other heavy metals at all concentrations The level of co-resistance shown by these isolates is a call for concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...