Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 156(1): 125-35, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18274780

RESUMO

Stratospheric ozone depletion has caused ground-level ultraviolet-B (UV-B) radiation to rise in temperate latitudes of both hemispheres. Because the effects of enhanced UV-B radiation on the nutrition of food consumed by mammalian herbivores are unknown, we measured nutritional and chemical constituents of 18 forages and related changes to in vitro dry matter digestibility. We also measured intake and in vivo digestibility of Pacific willow (Salix lasiandra) and alfalfa (Medicago sativa L.) by blue duikers (Cephalophus monticola). Forages were irradiated for 3 months with ambient (1x) or supplemental (1.6 x) UV-B radiation representing a 15% ozone depletion for Pullman, Washington, USA. Enhanced UV-B radiation had minimal and inconsistent effects on the nutritional content, in vitro dry matter digestibility, and protein-binding capacity of forages. However, flavonoid compounds increased in seven of the 13 forbs and woody dicots that were evaluated. Flavonoids were found to decrease only in yarrow (Achillea millefolium). When offered simultaneously, blue duikers preferred 1x and 1.6 x UV-B irradiated plants of alfalfa equally, but ate 26% less willow grown under 1.6 x UV-B radiation. However, when fed to duikers in separate feeding experiments, total dry matter intake and in vivo digestibility of dry matter, fiber, protein, and apparent energy did not differ between alfalfa and willow grown under 1x and 1.6 x UV-B radiation. We conclude that expected increases in UV-B radiation from ozone depletion would have minimal effects on intake and digestion of ruminant herbivores.


Assuntos
Plantas/efeitos da radiação , Ruminantes/fisiologia , Raios Ultravioleta , Animais , Fibras na Dieta/metabolismo , Flavonoides/metabolismo , Preferências Alimentares , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Taninos/metabolismo
2.
J Chem Ecol ; 33(5): 1025-39, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17406969

RESUMO

Ultraviolet-B (UV-B) radiation has been increasing in temperate latitudes in recent decades and is expected to continue rising for some time. Enhanced UV-B radiation can change plant chemistry, yet the effects of these changes on mammalian herbivores are unknown. To examine the influence of enhanced UV-B radiation on nutrition of a specialist and generalist hindgut fermenter, we measured nutritional and chemical constituents of three common North American range plants, big sagebrush (Artemisia tridentata), yarrow (Achillea millefolium), and bluebunch wheatgrass (Pseudoregneria spicata), and how these changes influenced in vitro dry matter digestibility and in vivo digestibility by pygmy rabbits (Brachylagus idahoensis) and eastern cottontails (Sylvilagus floridanus). Forages were irradiated for 3 mo with ambient (1x) or supplemental (1.6x) UV-B radiation representing a 15% ozone depletion for Pullman, WA, USA. Enhanced UV-B radiation had minimal effects on the nutritional content and the tannin-binding capacity of forages. Similarly, the terpene concentration in sagebrush and yarrow was not affected by higher UV-B irradiances. Flavonoid compounds increased in sagebrush but decreased in yarrow. Rabbit preference and intake was not affected by treatment levels for any forage species and no differences were found between treatments for dry matter, fiber, protein digestibility, and apparent digestible energy.


Assuntos
Achillea/efeitos da radiação , Artemisia/efeitos da radiação , Coelhos/fisiologia , Raios Ultravioleta , Achillea/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Artemisia/metabolismo , Ingestão de Alimentos , Feminino , Flavonoides/metabolismo , Preferências Alimentares , Masculino , Terpenos/metabolismo
3.
Tree Physiol ; 26(9): 1153-63, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16740491

RESUMO

Long-term effects of enhanced UV-B radiation were evaluated in field-grown and greenhouse-grown Quercus rubra L. (northern red oak), a species with a multiple flushing shoot growth habit. Seeds were germinated and grown in ambient, twice ambient (2x) or three times ambient (3x) biologically effective UV-B radiation from square-wave (greenhouse) or modulated (field) lamp systems for three growing seasons. Greenhouse plants in the 2x treatment had greater heights and diameters during the later part of the first year and into the second year, but by the third year there were no differences among treatments. There were no significant differences in growth among treatments for field plants. Enhanced UV-B radiation did not significantly reduce total biomass or distribution of biomass in either field or greenhouse plants. Net photosynthesis (3x), leaf conductance (2x and 3x) and water-use efficiency (3x) of greenhouse plants were greater in the enhanced UV-B radiation treatments in the second year but unaffected by the treatments in other years. None of the treatments affected these parameters in field plants. Dark respiration was increased by the 3x treatment in the first and third years in greenhouse plants, and by the 2x treatment during the second year in field plants. Enhanced UV-B had variable effects on apparent quantum yield and light compensation points. Chlorophylls were unaffected by enhanced UV-B radiation in both greenhouse and field conditions. Bulk methanol-extractable UV-absorbing compounds were increased only by the 3x treatment in greenhouse plants during the third year and by the 2x treatment in field plants during the second year. Overall, Q. rubra appears relatively resistant to potentially damaging enhanced UV-B radiation and is unlikely to be negatively impacted even in the predicted worst-case scenarios.


Assuntos
Ambiente Controlado , Quercus/crescimento & desenvolvimento , Quercus/efeitos da radiação , Raios Ultravioleta , Biomassa , Clorofila/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Quercus/metabolismo , Fatores de Tempo
4.
Photochem Photobiol ; 79(5): 382-98, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15191046

RESUMO

The potential role of ultraviolet-B (UV-B)-induced secondary plant metabolites as mediators of multiple trophic responses in terrestrial ecosystems is considered through review of the major classes of secondary metabolites, the pathways for their biosynthesis, interactions with primary and secondary consumers and known UV effects on their induction. Gross effects of UV-B radiation on plant growth and survival under realistic spectral balances in the field have been generally lacking, but subtle changes in carbon allocation and partitioning induced by UV-B, in particular production of secondary metabolites, can affect ecosystem-level processes. Secondary metabolites are important in plant-herbivore interactions and may affect pathogens. They act as feeding or oviposition deterrents to generalists and nonadapted specialists, but adapted specialists are stimulated to feed by these same compounds, which they detoxify and often sequester for use against their predators. This provides a route for tritrophic effects of enhanced UV-B radiation whereby herbivory may be increased while predation on the herbivore is simultaneously reduced. It is in this context that secondary metabolites may manifest their most important role. They can be the demonstrable mechanism establishing cause and effect at higher trophic levels because the consequences of their induction can be established at all trophic levels.


Assuntos
Ecossistema , Plantas/metabolismo , Plantas/efeitos da radiação , Luz Solar , Raios Ultravioleta , Animais , Humanos , Modelos Biológicos , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Plantas/classificação , Raios Ultravioleta/efeitos adversos
5.
Tree Physiol ; 23(16): 1081-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14522714

RESUMO

The interior west of North America provides many opportunities to study ecosystem responses to climate change, biological diversity and management of disturbance regimes. These ecosystem responses are not unique to the Rocky Mountains, but they epitomize similar scientific problems throughout North America. Better management of these ecosystems depends on a thorough understanding of the underlying biology and ecological interactions of the species that occupy the diverse habitats of this region. This review highlights progress in research to understand aspects of this complex ecosystem.


Assuntos
Ecossistema , Árvores , Altitude , Biodiversidade , Desidratação , América do Norte , Árvores/fisiologia , Água
6.
Tree Physiol ; 23(8): 527-35, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12730044

RESUMO

We investigated foliar phenolic composition of field- and greenhouse-grown Populus trichocarpa Torr. & A. Gray (black cottonwood) ramets subjected to near zero (0x), ambient (1x) or twice ambient (2x) concentrations of biologically effective ultraviolet-B (UV-B) radiation. After a 3-month treatment period, several age classes of foliage samples were harvested and the phenolic compounds extracted, separated by high performance liquid chromatography and identified and quantified by diode-array spectrometry and mass spectrometry. Foliar phenolic concentration was greater in 1x- and 2x-treated tissue than in 0x-treated tissue. Phenolic compounds that increased in response to UV-B radiation were predominantly flavonoids, primarily quercetin and kaempferol glycosides. Enhancement of UV-B radiation from 1x to 2x ambient concentration did not result in further flavonoid accumulation in either greenhouse or field ramets; however, a non-flavonoid phenolic glycoside, salicortin, increased in response to an increase in UV-B radiation from 1x to 2x ambient concentration. Increased salicortin concentrations accounted for at least 30-40% of the total (5%) increase in UV-absorption potential of 2x-treated tissue. Because salicortin and other salicylates are important in plant-herbivore-predator relationships, these increases are discussed in the context of collateral feeding studies. We conclude that enhanced solar UV-B radiation may significantly alter trophic structure in some ecosystems by stimulating specific phenolic compounds.


Assuntos
Flavonoides/análise , Folhas de Planta/efeitos da radiação , Populus/efeitos da radiação , Salicilatos/análise , Árvores/efeitos da radiação , Flavonoides/biossíntese , Folhas de Planta/química , Populus/química , Árvores/química , Raios Ultravioleta
7.
Tree Physiol ; 22(15-16): 1137-46, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12414373

RESUMO

To assess the potential impact of enhanced ultraviolet-B (UV-B) radiation over two trophic levels, we monitored key leaf chemical constituents and related changes in their concentration to dietary preference and performance of a specialist insect herbivore. Ramets of Populus trichocarpa Torr. & Gray (black cottonwood) were subjected to near zero (0X), ambient (1X) or twice ambient (2X) doses of biologically effective UV-B radiation (UV-B(BE)) in a randomized block design using either a square-wave (greenhouse) or a modulated (field) lamp system. After a 3-month treatment period, apparent photosynthesis was determined in situ and plants were harvested for biomass determination. Leaf subsamples were analyzed for nitrogen, sulfur, chlorophylls, UV-absorbing compounds and protein-precipitable tannins. Effects of changes in these constituents on feeding by Chrysomela scripta Fab. (cottonwood leaf beetle) were determined by (1) adult feeding preference trials and (2) larval growth rate trials. Enhanced UV-B(BE) radiation had minimal effects on photosynthesis, growth, leaf area and biomass distribution. In the greenhouse study, concentrations of foliar nitrogen and chlorophylls increased, but tannins decreased slightly in young leaves exposed to enhanced UV-B(BE) radiation. There were no significant effects on these parameters in the field study. The concentration of methanol-extractable foliar phenolics increased in plants grown with enhanced UV-B(BE) radiation in both the greenhouse and field studies. In feeding preference trials, adult C. scripta chose 2X-treated tissue almost twice as often as 1X-treated tissue in both greenhouse and field studies, but differences were not statistically significant (P = 0.12). In the field study, first instar larvae grown to adult eclosion on 2X-treated leaves had a significant (P < 0.001) reduction in consumption efficiency compared with larvae grown on 1X-treated leaves. We conclude that effects of enhanced UV-B(BE) radiation at the molecular-photochemical level can elicit significant responses at higher trophic levels that may ultimately affect forest canopy structure, plant competitive interactions and ecosystem-level processes.


Assuntos
Besouros/fisiologia , Folhas de Planta/química , Populus/química , Árvores/química , Animais , Biomassa , Clorofila/análise , Feminino , Larva , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Populus/crescimento & desenvolvimento , Populus/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Raios Ultravioleta
8.
J Photochem Photobiol B ; 66(2): 125-33, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11897512

RESUMO

Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.


Assuntos
Flavinas/metabolismo , Pinus/efeitos da radiação , Pseudotsuga/efeitos da radiação , Pinus/metabolismo , Pinus ponderosa , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Pseudotsuga/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA