Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1235, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371540

RESUMO

Building a resilient and sustainable agricultural sector requires the development and implementation of tailored climate change adaptation strategies. By focusing on durum wheat (Triticum turgidum subsp. durum) in the Euro-Mediterranean region, we estimate the benefits of adapting through seasonal cultivar-selection supported by an idealised agro-climate service based on seasonal climate forecasts. The cost of inaction in terms of mean yield losses, in 2021-2040, ranges from -7.8% to -5.8% associated with a 7% to 12% increase in interannual variability. Supporting cultivar choices at local scale may alleviate these impacts and even turn them into gains, from 0.4% to 5.3%, as soon as the performance of the agro-climate service increases. However, adaptation advantages on mean yield may come with doubling the estimated increase in the interannual yield variability.


Assuntos
Agricultura , Mudança Climática , Aclimatação , Triticum , Adaptação Fisiológica
2.
Foods ; 9(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545397

RESUMO

The growing interest in old durum wheat cultivars, due to enhanced consumer attention on healthy, traditional products and low-input agricultural systems, partly relies on their different quality characteristics compared to modern cultivars. Nine Italian durum wheat cultivars from different breeding periods were compared in two late-sown (January) field trials in order to subject their grain filling period to high temperatures similar to those expected in the future. Late sowing moved anthesis forward by about 10 days and increased the mean temperature during grain filling by 1.3 °C compared to that obtained when using the common sowing period of November-December. In these conditions, old cultivars were on average less productive than modern ones (2.36 vs. 3.54 tons ha-1, respectively), had a higher protein percentage (13.8% vs. 11.1%), a lower gluten index (24.3% vs. 56.3%), and a lower alveographic W (baking strength) (64 vs. 100 J 10-4). The differences were partly associated to variations in the gliadins:glutenins ratio. It depended on the genotype whether the grain and semolina protein percentage and gluten strength compensated one another in terms of alveographic indices to give the dough a strength similar to that of the modern cultivars in the range of moderately high temperatures, which resulted from delayed sowing. Further studies aimed at exploring the genetic variability of quality traits in the large genetic pool represented by the several Italian old and intermediate durum wheat cultivars still available are therefore advisable.

3.
Proc Natl Acad Sci U S A ; 114(35): 9326-9331, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28811375

RESUMO

Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.


Assuntos
Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Temperatura Alta , Modelos Biológicos , Poaceae/crescimento & desenvolvimento
4.
Glob Chang Biol ; 20(7): 2301-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24395589

RESUMO

Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 µmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.


Assuntos
Mudança Climática , Água/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Dióxido de Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Geografia , Modelos Biológicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...