Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
2.
Cardiovasc Res ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377486

RESUMO

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signaling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and hematologic disorders including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are a major component of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared to WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, proarrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodeling in vitro. Inhibition of soluble TNF-α prevented electrical remodeling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSIONS: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and in humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the proarrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodeling.

3.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L661-L671, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349120

RESUMO

It is unclear what effect biological sex has on outcomes of acute lung injury (ALI). Clinical studies are confounded by their observational design. We addressed this knowledge gap with a preclinical systematic review of ALI animal studies. We searched MEDLINE and Embase for studies of intratracheal/intranasal/aerosolized lipopolysaccharide administration (the most common ALI model) that reported sex-stratified data. Screening and data extraction were conducted in duplicate. Our primary outcome was histological tissue injury and secondary outcomes included alveolar-capillary barrier alterations and inflammatory markers. We used a random-effects inverse variance meta-analysis, expressing data as standardized mean difference (SMD) with 95% confidence intervals (CIs). Risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. We identified six studies involving 132 animals across 11 independent experiments. A total of 41 outcomes were extracted, with the direction of effect suggesting greater severity in males than females in 26/41 outcomes (63%). One study reported on lung histology and found that male mice exhibited greater injury than females (SMD: 1.61, 95% CI: 0.53-2.69). Meta-analysis demonstrated significantly elevated albumin levels (SMD: 2.17, 95% CI: 0.63-3.70) and total cell counts (SMD: 0.80, 95% CI: 0.27-1.33) in bronchoalveolar lavage fluid from male mice compared with female mice. Most studies had an "unclear risk of bias." Our findings suggest sex-related differences in ALI severity. However, these conclusions are drawn from a small number of animals and studies. Further research is required to address the fundamental issue of biological sex differences in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Animais , Lipopolissacarídeos/toxicidade , Feminino , Masculino , Caracteres Sexuais , Camundongos , Fatores Sexuais , Humanos , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L29-L38, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991487

RESUMO

Cell-free hemoglobin (CFH) is elevated in the airspace of patients with acute respiratory distress syndrome (ARDS) and is sufficient to cause acute lung injury in a murine model. However, the pathways through which CFH causes lung injury are not well understood. Toll-like receptor 4 (TLR4) is a mediator of inflammation after detection of damage- and pathogen-associated molecular patterns. We hypothesized that TLR4 signaling mediates the proinflammatory effects of CFH in the airspace. After intratracheal CFH, BALBc mice deficient in TLR4 had reduced inflammatory cell influx into the airspace [bronchoalveolar lavage (BAL) cell counts, median TLR4 knockout (KO): 0.8 × 104/mL [IQR 0.4-1.2 × 104/mL], wild-type (WT): 3.0 × 104/mL [2.2-4.0 × 104/mL], P < 0.001] and attenuated lung permeability (BAL protein, TLR4KO: 289 µg/mL [236-320], WT: 488 µg/mL [422-536], P < 0.001). These mice also had attenuated production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in the airspace. C57Bl/6 mice lacking TLR4 on myeloid cells only (LysM.Cre+/-TLR4fl/fl) had reduced cytokine production in the airspace after CFH, without attenuation of lung permeability. In vitro studies confirm that WT primary murine alveolar macrophages exposed to CFH (0.01-1 mg/mL) had dose-dependent increases in IL-6, IL-1 ß, CXC motif chemokine ligand 1 (CXCL-1), TNF-α, and IL-10 (P < 0.001). Murine MH-S alveolar-like macrophages show TLR4-dependent expression of IL-1ß, IL-6, and CXCL-1 in response to CFH. Primary alveolar macrophages from mice lacking TLR4 adaptor proteins myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-ß (TRIF) revealed that MyD88KO macrophages had 71-96% reduction in CFH-dependent proinflammatory cytokine production (P < 0.001), whereas macrophages from TRIFKO mice had variable changes in cytokine responses. These data demonstrate that myeloid TLR4 signaling through MyD88 is a key regulator of airspace inflammation in response to CFH.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) is elevated in the airspace of most patients with acute respiratory distress syndrome and causes severe inflammation. Here, we identify that CFH contributes to macrophage-induced cytokine production via Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling. These data increase our knowledge of the mechanisms through which CFH contributes to lung injury and may inform development of targeted therapeutics to attenuate inflammation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Interleucina-6/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Inflamação/etiologia , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar Aguda/metabolismo , Hemoglobinas/metabolismo , Síndrome do Desconforto Respiratório/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L206-L212, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113313

RESUMO

Bacterial pneumonia is a common clinical syndrome leading to significant morbidity and mortality worldwide. In the current study, we investigate a novel, multidirectional relationship between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Using an in vivo pneumonia model, we demonstrate that highly sulfated heparan sulfate (HS) oligosaccharides are shed into the airspaces in response to MRSA pneumonia. In vitro, these HS oligosaccharides do not directly alter MRSA growth or gene transcription. However, in the presence of an antimicrobial peptide (cathelicidin), increasing concentrations of HS inhibit the bactericidal activity of cathelicidin against MRSA as well as other nosocomial pneumonia pathogens (Klebsiella pneumoniae and Pseudomonas aeruginosa) in a dose-dependent manner. Surface plasmon resonance shows avid binding between HS and cathelicidin with a dissociation constant of 0.13 µM. These findings highlight a complex relationship in which shedding of airspace HS may hamper host defenses against nosocomial infection via neutralization of antimicrobial peptides. These findings may inform future investigation into novel therapeutic targets designed to restore local innate immune function in patients suffering from primary bacterial pneumonia.NEW & NOTEWORTHY Primary Staphylococcus aureus pneumonia causes pulmonary epithelial heparan sulfate (HS) shedding into the airspace. These highly sulfated HS fragments do not alter bacterial growth or transcription, but directly bind with host antimicrobial peptides and inhibit the bactericidal activity of these cationic polypeptides. These findings highlight a complex local interaction between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of bacterial pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Camundongos , Humanos , Animais , Catelicidinas/farmacologia , Catelicidinas/uso terapêutico , Peptídeos Catiônicos Antimicrobianos , Modelos Animais de Doenças , Pneumonia Bacteriana/tratamento farmacológico , Heparitina Sulfato , Oligossacarídeos/uso terapêutico , Antibacterianos
8.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942584

RESUMO

Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Células Endoteliais/metabolismo , Rim/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Hemoglobinas/farmacologia , Hemoglobinas/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Injúria Renal Aguda/tratamento farmacológico
9.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930895

RESUMO

MOTIVATION: Phecodes are widely used and easily adapted phenotypes based on International Classification of Diseases codes. The current version of phecodes (v1.2) was designed primarily to study common/complex diseases diagnosed in adults; however, there are numerous limitations in the codes and their structure. RESULTS: Here, we present phecodeX, an expanded version of phecodes with a revised structure and 1,761 new codes. PhecodeX adds granularity to phenotypes in key disease domains that are under-represented in the current phecode structure-including infectious disease, pregnancy, congenital anomalies, and neonatology-and is a more robust representation of the medical phenome for global use in discovery research. AVAILABILITY AND IMPLEMENTATION: phecodeX is available at https://github.com/PheWAS/phecodeX.


Assuntos
Estudo de Associação Genômica Ampla , Fenômica , Polimorfismo de Nucleotídeo Único , Fenótipo
10.
JAMA Netw Open ; 6(10): e2336483, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782499

RESUMO

Importance: Natural language processing tools, such as ChatGPT (generative pretrained transformer, hereafter referred to as chatbot), have the potential to radically enhance the accessibility of medical information for health professionals and patients. Assessing the safety and efficacy of these tools in answering physician-generated questions is critical to determining their suitability in clinical settings, facilitating complex decision-making, and optimizing health care efficiency. Objective: To assess the accuracy and comprehensiveness of chatbot-generated responses to physician-developed medical queries, highlighting the reliability and limitations of artificial intelligence-generated medical information. Design, Setting, and Participants: Thirty-three physicians across 17 specialties generated 284 medical questions that they subjectively classified as easy, medium, or hard with either binary (yes or no) or descriptive answers. The physicians then graded the chatbot-generated answers to these questions for accuracy (6-point Likert scale with 1 being completely incorrect and 6 being completely correct) and completeness (3-point Likert scale, with 1 being incomplete and 3 being complete plus additional context). Scores were summarized with descriptive statistics and compared using the Mann-Whitney U test or the Kruskal-Wallis test. The study (including data analysis) was conducted from January to May 2023. Main Outcomes and Measures: Accuracy, completeness, and consistency over time and between 2 different versions (GPT-3.5 and GPT-4) of chatbot-generated medical responses. Results: Across all questions (n = 284) generated by 33 physicians (31 faculty members and 2 recent graduates from residency or fellowship programs) across 17 specialties, the median accuracy score was 5.5 (IQR, 4.0-6.0) (between almost completely and complete correct) with a mean (SD) score of 4.8 (1.6) (between mostly and almost completely correct). The median completeness score was 3.0 (IQR, 2.0-3.0) (complete and comprehensive) with a mean (SD) score of 2.5 (0.7). For questions rated easy, medium, and hard, the median accuracy scores were 6.0 (IQR, 5.0-6.0), 5.5 (IQR, 5.0-6.0), and 5.0 (IQR, 4.0-6.0), respectively (mean [SD] scores were 5.0 [1.5], 4.7 [1.7], and 4.6 [1.6], respectively; P = .05). Accuracy scores for binary and descriptive questions were similar (median score, 6.0 [IQR, 4.0-6.0] vs 5.0 [IQR, 3.4-6.0]; mean [SD] score, 4.9 [1.6] vs 4.7 [1.6]; P = .07). Of 36 questions with scores of 1.0 to 2.0, 34 were requeried or regraded 8 to 17 days later with substantial improvement (median score 2.0 [IQR, 1.0-3.0] vs 4.0 [IQR, 2.0-5.3]; P < .01). A subset of questions, regardless of initial scores (version 3.5), were regenerated and rescored using version 4 with improvement (mean accuracy [SD] score, 5.2 [1.5] vs 5.7 [0.8]; median score, 6.0 [IQR, 5.0-6.0] for original and 6.0 [IQR, 6.0-6.0] for rescored; P = .002). Conclusions and Relevance: In this cross-sectional study, chatbot generated largely accurate information to diverse medical queries as judged by academic physician specialists with improvement over time, although it had important limitations. Further research and model development are needed to correct inaccuracies and for validation.


Assuntos
Inteligência Artificial , Médicos , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Software
11.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L368-L384, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489855

RESUMO

There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Síndrome do Desconforto Respiratório , Sepse , Animais , Camundongos , Liraglutida/efeitos adversos , Hiperóxia/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/metabolismo , Citocinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Edema
12.
Lancet Respir Med ; 11(8): 726-738, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37475124

RESUMO

Despite advances in the treatment and mitigation of critical illness caused by infection with SARS-CoV-2, millions of survivors have a devastating, post-acute infection syndrome known as long COVID. A large proportion of patients with long COVID have nervous system dysfunction, which is also seen in the distinct but overlapping condition of post-intensive care syndrome (PICS), putting survivors of COVID-19-related critical illness at high risk of long-lasting morbidity affecting multiple organ systems and, as a result, engendering measurable deficits in quality of life and productivity. In this Series paper, we discuss neurological, cognitive, and psychiatric sequelae in patients who have survived critical illness due to COVID-19. We review current knowledge of the epidemiology and pathophysiology of persistent neuropsychological impairments, and outline potential preventive strategies based on safe, evidence-based approaches to the management of pain, agitation, delirium, anticoagulation, and ventilator weaning during critical illness. We highlight priorities for current and future research, including possible therapeutic approaches, and offer considerations for health services to address the escalating health burden of long COVID.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Qualidade de Vida , Síndrome de COVID-19 Pós-Aguda , Estado Terminal/terapia , Estado Terminal/psicologia , Cognição
13.
Res Sq ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909565

RESUMO

Background: Natural language processing models such as ChatGPT can generate text-based content and are poised to become a major information source in medicine and beyond. The accuracy and completeness of ChatGPT for medical queries is not known. Methods: Thirty-three physicians across 17 specialties generated 284 medical questions that they subjectively classified as easy, medium, or hard with either binary (yes/no) or descriptive answers. The physicians then graded ChatGPT-generated answers to these questions for accuracy (6-point Likert scale; range 1 - completely incorrect to 6 - completely correct) and completeness (3-point Likert scale; range 1 - incomplete to 3 - complete plus additional context). Scores were summarized with descriptive statistics and compared using Mann-Whitney U or Kruskal-Wallis testing. Results: Across all questions (n=284), median accuracy score was 5.5 (between almost completely and completely correct) with mean score of 4.8 (between mostly and almost completely correct). Median completeness score was 3 (complete and comprehensive) with mean score of 2.5. For questions rated easy, medium, and hard, median accuracy scores were 6, 5.5, and 5 (mean 5.0, 4.7, and 4.6; p=0.05). Accuracy scores for binary and descriptive questions were similar (median 6 vs. 5; mean 4.9 vs. 4.7; p=0.07). Of 36 questions with scores of 1-2, 34 were re-queried/re-graded 8-17 days later with substantial improvement (median 2 vs. 4; p<0.01). Conclusions: ChatGPT generated largely accurate information to diverse medical queries as judged by academic physician specialists although with important limitations. Further research and model development are needed to correct inaccuracies and for validation.

14.
Pulm Circ ; 13(1): e12185, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36743426

RESUMO

Circulating cell-free hemoglobin (CFH) is elevated in pulmonary arterial hypertension (PAH) and associated with poor outcomes but the mechanisms are unknown. We hypothesized that CFH is generated from the pulmonary circulation and inadequately cleared in PAH. Transpulmonary CFH (difference between wedge and pulmonary artery positions) and lung hemoglobin α were analyzed in patients with PAH and healthy controls. Haptoglobin genotype and plasma hemoglobin processing proteins were analyzed in patients with PAH, unaffected bone morphogenetic protein receptor type II mutation carriers (UMCs), and control subjects. Transpulmonary CFH was increased in patients with PAH (p = 0.04) and correlated with pulmonary vascular resistanc (PVR) (r s = 0.75, p = 0.02) and mean pulmonary arterial pressure (mPAP) (r s = 0.78, p = 0.02). Pulmonary vascular hemoglobin α protein was increased in patients with PAH (p = 0.006), especially in occluded vessels (p = 0.04). Haptoglobin genotype did not differ between groups. Plasma haptoglobin was higher in UMCs compared with both control subjects (p = 0.03) and patients with HPAH (p < 0.0001); patients with IPAH had higher circulating haptoglobin levels than patients with HPAH (p = 0.006). Notably, circulating CFH to haptoglobin ratio was elevated in patients with HPAH compared to control subjects (p = 0.02) and UMCs (p = 0.006). Moreover, in patients with PAH, CFH: haptoglobin correlated with PVR (r s = 0.37, p = 0.0004) and mPAP (r s = 0.25, p = 0.02). Broad alterations in other plasma hemoglobin processing proteins (hemopexin, heme oxygenase-1, and sCD163) were observed. In conclusion, pulmonary vascular CFH is associated with increased PVR and mPAP in PAH and dysregulated CFH clearance may contribute to PAH pathology. Further study is needed to determine whether targeting CFH is a viable therapeutic for pulmonary vascular dysfunction in PAH.

15.
JAMA Netw Open ; 6(2): e230380, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853612

RESUMO

Importance: Sepsis is associated with long-term cognitive impairment and worse psychological and functional outcomes. Potential mechanisms include intracerebral oxidative stress and inflammation, yet little is known about the effects of early antioxidant and anti-inflammatory therapy on cognitive, psychological, and functional outcomes in sepsis survivors. Objective: To describe observed differences in long-term cognitive, psychological, and functional outcomes of vitamin C, thiamine, and hydrocortisone between the intervention and control groups in the Vitamin C, Thiamine, and Steroids in Sepsis (VICTAS) randomized clinical trial. Design, Setting, and Participants: This prespecified secondary analysis reports the 6-month outcomes of the multicenter, double-blind, placebo-controlled VICTAS randomized clinical trial, which was conducted between August 2018 and July 2019. Adult patients with sepsis-induced respiratory and/or cardiovascular dysfunction who survived to discharge or day 30 were recruited from 43 intensive care units in the US. Participants were randomized 1:1 to either the intervention or control group. Cognitive, psychological, and functional outcomes at 6 months after randomization were assessed via telephone through January 2020. Data analyses were conducted between February 2021 and December 2022. Interventions: The intervention group received intravenous vitamin C (1.5 g), thiamine hydrochloride (100 mg), and hydrocortisone sodium succinate (50 mg) every 6 hours for 96 hours or until death or intensive care unit discharge. The control group received matching placebo. Main Outcomes and Measures: Cognitive performance, risk of posttraumatic stress disorder and depression, and functional status were assessed using a battery of standardized instruments that were administered during a 1-hour telephone call 6 months after randomization. Results: After exclusions, withdrawals, and deaths, the final sample included 213 participants (median [IQR] age, 57 [47-67] years; 112 males [52.6%]) who underwent long-term outcomes assessment and had been randomized to either the intervention group (n = 108) or control group (n = 105). The intervention group had lower immediate memory scores (adjusted OR [aOR], 0.49; 95% CI, 0.26-0.89), higher odds of posttraumatic stress disorder (aOR, 3.51; 95% CI, 1.18-10.40), and lower odds of receiving mental health care (aOR, 0.38; 95% CI, 0.16-0.89). No other statistically significant differences in cognitive, psychological, and functional outcomes were found between the 2 groups. Conclusions and Relevance: In survivors of sepsis, treatment with vitamin C, thiamine, and hydrocortisone did not improve or had worse cognitive, psychological, and functional outcomes at 6 months compared with patients who received placebo. These findings challenge the hypothesis that antioxidant and anti-inflammatory therapy during critical illness mitigates the development of long-term cognitive, psychological, and functional impairment in sepsis survivors. Trial Registration: ClinicalTrials.gov Identifier: NCT03509350.


Assuntos
Ácido Ascórbico , Sepse , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Ácido Ascórbico/uso terapêutico , Hidrocortisona/uso terapêutico , Antioxidantes , Vitaminas , Tiamina/uso terapêutico , Sepse/tratamento farmacológico , Esteroides , Cognição
16.
Am J Physiol Cell Physiol ; 324(3): C665-C673, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717098

RESUMO

Cell-free hemoglobin is a pathophysiological driver of endothelial injury during sepsis and acute respiratory distress syndrome (ARDS), but the precise mechanisms are not fully understood. We hypothesized that hemoglobin (Hb) increases leukocyte adhesion and endothelial activation in human lung microvascular endothelial cells (HLMVEC). We stimulated primary HLMVEC, or leukocytes isolated from healthy human donors, with Hb (0.5 mg/mL) and found that leukocyte adhesion to lung endothelium in response to Hb is an endothelial-dependent process. Next, we stimulated HLMVEC with Hb over time (1, 3, 6, and 24 h) and found increased transcription and release of inflammatory cytokines (IL-1ß, IL-8, and IL-6). In addition, Hb exposure variably upregulated transcription, total protein expression, and cell-surface localization of adhesion molecules E-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Since VCAM-1 was most upregulated by Hb, we further tested mechanisms for Hb-mediated upregulation of VCAM-1 in HLMVEC. Although upregulation of VCAM-1 was not prevented by hemoglobin scavenger haptoglobin, heme scavenger hemopexin, or inhibition of nod-like receptor protein 3 (NLRP3) signaling, blocking Toll-like receptor 4 (TLR4) with small molecule inhibitor TAK-242 (1 µM) prevented upregulation of VCAM-1 in response to Hb. Consistently, Hb increased nuclear factor-κB (NF-κB) activation and intracellular reactive oxygen species (ROS), which were both prevented by TLR4 inhibition. Together, these data demonstrate that Hb increases leukocyte-endothelial adhesion and activates HLMVEC through TLR4 signaling, indicating a potential mechanism for Hb-mediated pulmonary vascular injury during inflammatory and hemolytic conditions.


Assuntos
Células Endoteliais , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Adesão Celular , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Selectina E/metabolismo , Leucócitos/metabolismo , Hemoglobinas/metabolismo , Pulmão/metabolismo
17.
Brain Behav Immun ; 107: 165-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243287

RESUMO

Sepsis and systemic inflammation are often accompanied by severe encephalopathy, sleep disruption and delirium that strongly correlate with poor clinical outcomes including long-term cognitive deficits. The cardinal manifestations of delirium are fluctuating altered mental status and inattention, identified in critically ill patients by interactive bedside assessment. The lack of analogous assessments in mouse models or clear biomarkers is a challenge to preclinical studies of delirium. In this study, we utilized concurrent measures of telemetric EEG recordings and neurobehavioral tasks in mice to characterize inattention and persistent cognitive deficits following polymicrobial sepsis. During the 24-hour critical illness period for the mice, slow-wave EEG dominance, sleep disruption, and hypersensitivity to auditory stimuli in neurobehavioral tasks resembled clinical observations in delirious patients in which alterations in similar outcome measurements, although measured differently in mice and humans, are reported. Mice were tested for nest building ability 7 days after sepsis induction, when sickness behaviors and spontaneous activity had returned to baseline. Animals that showed persistent deficits determined by poor nest building at 7 days also exhibited molecular changes in hippocampal long-term potentiation compared to mice that returned to baseline cognitive performance. Together, these behavioral and electrophysiological biomarkers offer a robust mouse model with which to further probe molecular pathways underlying brain and behavioral changes during and after acute illness such as sepsis.


Assuntos
Potenciação de Longa Duração , Humanos , Camundongos , Animais
18.
Blood Cells Mol Dis ; 98: 102699, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36027791

RESUMO

Elevated levels of circulating cell-free hemoglobin (CFH) are an integral feature of several clinical conditions including sickle cell anemia, sepsis, hemodialysis and cardiopulmonary bypass. Oxidized (Fe3+, ferric) hemoglobin contributes to the pathophysiology of these disease states and is therefore widely studied in experimental models, many of which use commercially sourced CFH. In this study, we treated human endothelial cells with commercially sourced ferric hemoglobin and observed the appearance of dense cytoplasmic aggregates (CAgg) over time. These CAgg were intensely autofluorescent, altered intracellular structures (such as mitochondria), formed in multiple cell types and with different media composition, and formed regardless of the presence or absence of cells. An in-depth chemical analysis of these CAgg revealed that they contain inorganic components and are not pure hemoglobin. To oxidize freshly isolated hemoglobin without addition of an oxidizing agent, we developed a novel method to convert ferrous CFH to ferric CFH using ultraviolet light without the need for additional redox agents. Unlike commercial ferric hemoglobin, treatment of cells with the fresh ferric hemoglobin did not lead to CAgg formation. These studies suggest that commercially sourced CFH may contain stabilizers and additives which contribute to CAgg formation.


Assuntos
Células Endoteliais , Raios Ultravioleta , Humanos , Células Endoteliais/metabolismo , Hemoglobinas/metabolismo , Oxirredução , Ferro/metabolismo
20.
Anaesth Crit Care Pain Med ; 41(5): 101121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781076

RESUMO

While the coronavirus disease 2019 (COVID-19) pandemic placed a heavy burden on healthcare systems worldwide, it also induced urgent mobilisation of research teams to develop treatments preventing or curing the disease and its consequences. It has, therefore, challenged critical care research to rapidly focus on specific fields while forcing critical care physicians to make difficult ethical decisions. This narrative review aims to summarise critical care research -from organisation to research fields- in this pandemic setting and to highlight opportunities to improve research efficiency in the future, based on what is learned from COVID-19. This pressure on research revealed, i.e., (i) the need to harmonise regulatory processes between countries, allowing simplified organisation of international research networks to improve their efficiency in answering large-scale questions; (ii) the importance of developing translational research from which therapeutic innovations can emerge; (iii) the need for improved triage and predictive scores to rationalise admission to the intensive care unit. In this context, key areas for future critical care research and better pandemic preparedness are artificial intelligence applied to healthcare, characterisation of long-term symptoms, and ethical considerations. Such collaborative research efforts should involve groups from both high and low-to-middle income countries to propose worldwide solutions. As a conclusion, stress tests on healthcare organisations should be viewed as opportunities to design new research frameworks and strategies. Worldwide availability of research networks ready to operate is essential to be prepared for next pandemics. Importantly, researchers and physicians should prioritise realistic and ethical goals for both clinical care and research.


Assuntos
COVID-19 , Pandemias , Inteligência Artificial , Cuidados Críticos , Atenção à Saúde , Humanos , Pandemias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...