Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L661-L671, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349120

RESUMO

It is unclear what effect biological sex has on outcomes of acute lung injury (ALI). Clinical studies are confounded by their observational design. We addressed this knowledge gap with a preclinical systematic review of ALI animal studies. We searched MEDLINE and Embase for studies of intratracheal/intranasal/aerosolized lipopolysaccharide administration (the most common ALI model) that reported sex-stratified data. Screening and data extraction were conducted in duplicate. Our primary outcome was histological tissue injury and secondary outcomes included alveolar-capillary barrier alterations and inflammatory markers. We used a random-effects inverse variance meta-analysis, expressing data as standardized mean difference (SMD) with 95% confidence intervals (CIs). Risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. We identified six studies involving 132 animals across 11 independent experiments. A total of 41 outcomes were extracted, with the direction of effect suggesting greater severity in males than females in 26/41 outcomes (63%). One study reported on lung histology and found that male mice exhibited greater injury than females (SMD: 1.61, 95% CI: 0.53-2.69). Meta-analysis demonstrated significantly elevated albumin levels (SMD: 2.17, 95% CI: 0.63-3.70) and total cell counts (SMD: 0.80, 95% CI: 0.27-1.33) in bronchoalveolar lavage fluid from male mice compared with female mice. Most studies had an "unclear risk of bias." Our findings suggest sex-related differences in ALI severity. However, these conclusions are drawn from a small number of animals and studies. Further research is required to address the fundamental issue of biological sex differences in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Animais , Lipopolissacarídeos/toxicidade , Feminino , Masculino , Caracteres Sexuais , Camundongos , Fatores Sexuais , Humanos , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/metabolismo
3.
Cardiovasc Res ; 120(8): 899-913, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38377486

RESUMO

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.


Assuntos
Potenciais de Ação , Proteínas Adaptadoras de Transdução de Sinal , Fibrilação Atrial , Modelos Animais de Doenças , Interleucina-1beta , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Animais , Feminino , Humanos , Masculino , Potenciais de Ação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/genética , Benzilaminas/farmacologia , Predisposição Genética para Doença , Frequência Cardíaca/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L206-L212, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113313

RESUMO

Bacterial pneumonia is a common clinical syndrome leading to significant morbidity and mortality worldwide. In the current study, we investigate a novel, multidirectional relationship between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Using an in vivo pneumonia model, we demonstrate that highly sulfated heparan sulfate (HS) oligosaccharides are shed into the airspaces in response to MRSA pneumonia. In vitro, these HS oligosaccharides do not directly alter MRSA growth or gene transcription. However, in the presence of an antimicrobial peptide (cathelicidin), increasing concentrations of HS inhibit the bactericidal activity of cathelicidin against MRSA as well as other nosocomial pneumonia pathogens (Klebsiella pneumoniae and Pseudomonas aeruginosa) in a dose-dependent manner. Surface plasmon resonance shows avid binding between HS and cathelicidin with a dissociation constant of 0.13 µM. These findings highlight a complex relationship in which shedding of airspace HS may hamper host defenses against nosocomial infection via neutralization of antimicrobial peptides. These findings may inform future investigation into novel therapeutic targets designed to restore local innate immune function in patients suffering from primary bacterial pneumonia.NEW & NOTEWORTHY Primary Staphylococcus aureus pneumonia causes pulmonary epithelial heparan sulfate (HS) shedding into the airspace. These highly sulfated HS fragments do not alter bacterial growth or transcription, but directly bind with host antimicrobial peptides and inhibit the bactericidal activity of these cationic polypeptides. These findings highlight a complex local interaction between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of bacterial pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Camundongos , Humanos , Animais , Catelicidinas/farmacologia , Catelicidinas/uso terapêutico , Peptídeos Catiônicos Antimicrobianos , Modelos Animais de Doenças , Pneumonia Bacteriana/tratamento farmacológico , Heparitina Sulfato , Oligossacarídeos/uso terapêutico , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA