Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(12): e15756, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37332022

RESUMO

Volumetric muscle loss (VML) is associated with persistent functional impairment due to a lack of de novo muscle regeneration. As mechanisms driving the lack of regeneration continue to be established, adjunctive pharmaceuticals to address the pathophysiology of the remaining muscle may offer partial remediation. Studies were designed to evaluate the tolerance and efficacy of two FDA-approved pharmaceutical modalities to address the pathophysiology of the remaining muscle tissue after VML injury: (1) nintedanib (an anti-fibrotic) and (2) combined formoterol and leucine (myogenic promoters). Tolerance was first established by testing low- and high-dosage effects on uninjured skeletal muscle mass and myofiber cross-sectional area in adult male C57BL/6J mice. Next, tolerated doses of the two pharmaceutical modalities were tested in VML-injured adult male C57BL/6J mice after an 8-week treatment period for their ability to modulate muscle strength and whole-body metabolism. The most salient findings indicate that formoterol plus leucine mitigated the loss in muscle mass, myofiber number, whole-body lipid oxidation, and muscle strength, and resulted in a higher whole-body metabolic rate (p ≤ 0.016); nintedanib did not exacerbate or correct aspects of the muscle pathophysiology after VML. This supports ongoing optimization efforts, including scale-up evaluations of formoterol treatment in large animal models of VML.


Assuntos
Doenças Musculares , Regeneração , Camundongos , Animais , Masculino , Leucina/farmacologia , Regeneração/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Preparações Farmacêuticas
2.
Exp Neurol ; 365: 114431, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142114

RESUMO

An often-overlooked component of traumatic skeletal muscle injuries is the impact on the nervous system and resultant innervation of the affected muscles. Recent work in a rodent model of volumetric muscle loss (VML) injury demonstrated a progressive, secondary loss of neuromuscular junction (NMJ) innervation, supporting a role of NMJ dysregulation in chronic functional deficits. Terminal Schwann cells (tSCs) are known to be vital for the maintenance of NMJ structure and function, in addition to guiding repair and regeneration after injury. However, the tSC response to a traumatic muscle injury such as VML is not known. Thus, a study was conducted to investigate the effect of VML on tSC morphological characteristics and neurotrophic signaling proteins in adult male Lewis rats that underwent VML injury to the tibialis anterior muscle using a temporal design with outcome assessments at 3, 7, 14, 21, and 48 days post-injury. The following salient observations were made; first, although there is a loss of innervation over time, the number of tSCs per NMJ increases, significantly so at 48 days post-injury compared to control. The degree of NMJ fragmentation was positively correlated with tSC number after injury. Moreover, neurotrophic factors such as NRG1 and BDNF are elevated after injury through at least 48 days. These results were unanticipated and in contrast to neurodegenerative disease models, in which there is a reduction in tSC number that precedes denervation. However, we found that while there are more tSCs per NMJ after injury, they cover a significantly smaller percent of the post-synaptic endplate area compared to control. These findings support a sustained increase in neurotrophic activity and tSC number after VML, which is a maladaptive response occurring in parallel to other aspects of the VML injury, such as over-accumulation of collagen and aberrant inflammatory signaling.


Assuntos
Doenças Neurodegenerativas , Ratos , Animais , Masculino , Doenças Neurodegenerativas/metabolismo , Ratos Endogâmicos Lew , Junção Neuromuscular/metabolismo , Células de Schwann/metabolismo , Músculo Esquelético/metabolismo
3.
J Physiol ; 601(4): 743-761, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36536512

RESUMO

Volumetric muscle loss (VML) is the traumatic loss of skeletal muscle, resulting in chronic functional deficits and pathological comorbidities, including altered whole-body metabolic rate and respiratory exchange ratio (RER), despite no change in physical activity in animal models. In other injury models, treatment with ß2 receptor agonists (e.g. formoterol) improves metabolic and skeletal muscle function. We aimed first to examine if restricting physical activity following injury affects metabolic and skeletal muscle function, and second, to enhance the metabolic and contractile function of the muscle remaining following VML injury through treatment with formoterol. Adult male C57Bl/6J mice (n = 32) underwent VML injury to the posterior hindlimb compartment and were randomly assigned to unrestricted or restricted activity and formoterol treatment or no treatment; age-matched injury naïve mice (n = 4) were controls for biochemical analyses. Longitudinal 24 h evaluations of physical activity and whole-body metabolism were conducted following VML. In vivo muscle function was assessed terminally, and muscles were biochemically evaluated for protein expression, mitochondrial enzyme activity and untargeted metabolomics. Restricting activity chronically after VML had the greatest effect on physical activity and RER, reflected in reduced lipid oxidation, although changes were attenuated by formoterol treatment. Formoterol enhanced injured muscle mass, while mitigating functional deficits. These novel findings indicate physical activity restriction may recapitulate following VML clinically, and adjunctive oxidative treatment may create a metabolically beneficial intramuscular environment while enhancing the injured muscle's mass and force-producing capacity. Further investigation is needed to evaluate adjunctive oxidative treatment with rehabilitation, which may augment the muscle's regenerative and functional capacity following VML. KEY POINTS: The natural ability of skeletal muscle to regenerate and recover function is lost following complex traumatic musculoskeletal injury, such as volumetric muscle loss (VML), and physical inactivity following VML may incur additional deleterious consequences for muscle and metabolic health. Modelling VML injury-induced physical activity restriction altered whole-body metabolism, primarily by decreasing lipid oxidation, while preserving local skeletal muscle metabolic activity. The ß2 adrenergic receptor agonist formoterol has shown promise in other severe injury models to improve regeneration, recover function and enhance metabolism. Treatment with formoterol enhanced mass of the injured muscle and whole-body metabolism while mitigating functional deficits resulting from injury. Understanding of chronic effects of the clinically available and FDA-approved pharmaceutical formoterol could be a translational option to support muscle function after VML injury.


Assuntos
Músculo Esquelético , Doenças Musculares , Masculino , Camundongos , Animais , Músculo Esquelético/fisiologia , Doenças Musculares/patologia , Regeneração/fisiologia , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/metabolismo , Lipídeos/farmacologia
4.
Exp Physiol ; 108(1): 76-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116106

RESUMO

NEW FINDINGS: What is the central question of this study? First, how does physical rehabilitation influence recovery from traumatic muscle injury? Second, how does physical activity impact the rehabilitation response for skeletal muscle function and whole-body metabolism? What is the main finding and its importance? The most salient findings were that rehabilitation impaired muscle function and range of motion, while restricting activity mitigated some negative effects but also impacted whole-body metabolism. These data suggest that first, work must continue to explore treatment parameters, including modality, time, type, duration and intensity, to find the best rehabilitation approaches for volumetric muscle loss injuries; and second, restricting activity acutely might enhance rehabilitation response, but whole-body co-morbidities should continue to be considered. ABSTRACT: Volumetric muscle loss (VML) injury occurs when a substantial volume of muscle is lost by surgical removal or trauma, resulting in an irrecoverable deficit in muscle function. Recently, it was suggested that VML impacts whole-body and muscle-specific metabolism, which might contribute to the inability of the muscle to respond to treatments such as physical rehabilitation. The aim of this work was to understand the complex relationship between physical activity and the response to rehabilitation after VML in an animal model, evaluating the rehabilitation response by measurement of muscle function and whole-body metabolism. Adult male mice (n = 24) underwent a multi-muscle, full-thickness VML injury to the gastrocnemius, soleus and plantaris muscles and were randomized into one of three groups: (1) untreated; (2) rehabilitation (i.e., combined electrical stimulation and range of motion, twice per week, beginning 72 h post-injury, for ∼8 weeks); or (3) rehabilitation and restriction of physical activity. There was a lack of positive adaption associated with electrical stimulation and range of motion intervention alone; however, maximal isometric torque of the posterior muscle group was greater in mice receiving treatment with activity restriction (P = 0.008). Physical activity and whole-body metabolism were measured ∼6 weeks post-injury; metabolic rate decreased (P = 0.001) and respiratory exchange ratio increased (P = 0.022) with activity restriction. Therefore, restricting physical activity might enhance an intervention delivered to the injured muscle group but impair whole-body metabolism. It is possible that restricting activity is important initially post-injury to protect the muscle from excess demand. A gradual increase in activity throughout the course of treatment might optimize muscle function and whole-body metabolism.


Assuntos
Doenças Musculares , Regeneração , Masculino , Camundongos , Animais , Regeneração/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Modelos Animais de Doenças , Estimulação Elétrica
5.
PLoS One ; 16(6): e0253629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170933

RESUMO

Volumetric muscle loss (VML) injuries result in a non-recoverable loss of muscle tissue and function due to trauma or surgery. Reductions in physical activity increase the risk of metabolic comorbidities over time, and it is likely that VML may reduce whole-body activity. However, these aspects remain uncharacterized following injury. Our goal was to characterize the impact of VML on whole-body physical activity and metabolism, and to further investigate possible muscle-specific metabolic changes. Adult male C57Bl/6J (n = 28) mice underwent a standardized VML injury to the posterior compartment of the hind limb, or served as injury naïve controls. Mice underwent longitudinal evaluation of whole-body physical activity and metabolism in specialized cages up to three times over the course of 8 weeks. At terminal time points of 4- and 8-weeks post-VML in vivo muscle function of the posterior compartment was evaluated. Additionally, the gastrocnemius muscle was collected to understand histological and biochemical changes in the muscle remaining after VML. The VML injury did not alter the physical activity of mice. However, there was a noted reduction in whole-body metabolism and diurnal fluctuations between lipid and carbohydrate oxidation were also reduced, largely driven by lower carbohydrate utilization during active hours. Following VML, muscle-specific changes indicate a decreased proportion of fast (i.e., type IIb and IIx) and a greater proportion of slow (i.e., type I and IIa) fibers. However, there were minimal changes in the capillarity and metabolic biochemical activity properties of the gastrocnemius muscle, suggesting a miss-match in capacity to support the physiologic needs of the fibers. These novel findings indicate that following VML, independent of changes in physical activity, there is whole-body diurnal metabolic inflexibility. Supporting future investigations into the chronic and overlooked co-morbidities of VML injury.


Assuntos
Metabolismo dos Carboidratos , Metabolismo dos Lipídeos , Força Muscular , Músculo Esquelético , Atrofia Muscular , Condicionamento Físico Animal , Animais , Modelos Animais de Doenças , Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Camundongos , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/mortalidade , Atrofia Muscular/fisiopatologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...