Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(51): eabj5230, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910521

RESUMO

Communication between conspecific individuals is an essential part of life both in terrestrial and marine realms. Until recently, social behavior in marine phytoplankton was assumed to rely mainly on the secretion of a variety of infochemicals that allowed population-scale collective responses. Here, we demonstrate that pelagic diatoms also use Sun-stimulated fluorescence signals for synchronizing their behavior. These unicellular microorganisms, playing a key biogeochemical role in the ocean, use photoreceptor proteins and red­far-red fluorescent radiation to communicate. A characteristic beaconing signal is generated by rhythmic organelle displacement within the cell cytoplasm, triggering coordinated population behavior. These light-based communication networks could critically determine major facets of diatom ecology and fitness and regulate the dynamics of larger-scale ocean processes.

2.
Opt Express ; 28(9): 14085-14099, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403870

RESUMO

In situ laser diffractometry (LD) is increasingly used in oceanographic studies to estimate sediment transport, particle fluxes and to assess the concentration of marine phytoplankton. It enables an accurate characterization of the size distribution of suspended particles from the scattering signal produced by their interaction with a collimated laser beam. LD reliably reflects the sizes of suspensions dominated by nearly spherical particles; however, when complex particle morphologies dominate the suspension (e.g. phytoplankton) the resulting particle size distribution (PSD) may present significant variations attributed to different factors. In particular, the orientation of non-spherical particles - which abound in the sea - modifies LD measurements of PSDs. While this may be interpreted as a drawback for some studies (i.e. when precise measurement of the volume concentration is required), we propose that detailed analysis of this signal provides information on particle orientation. We use PDMS micropillars with prescribed elliptical cross-sections to experimentally determine the dependence between the spatial orientation of elongated particles and changes in the PSD measured with a LISST laser diffractometer. We show that LD can be used to adequately characterize the different dimensions of the non-spherical particles at specific orientations. Using this property, we describe and validate a method to infer the preferential orientation of particles in the sea. Our study opens new perspectives in the use of in-situ LD in ocean research.

3.
Proc Natl Acad Sci U S A ; 116(32): 15997-16002, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31346087

RESUMO

Finding a partner in an inherently unsteady 3-dimensional system, such as the planktonic marine environment, is a difficult task for nonswimming organisms with poor control over their orientation. We experimentally investigate the process of cell pairing in pennate marine diatoms and present field evidence of its occurrence in the ocean. We describe the mechanism as a 3-step process in which pennate diatoms (i) vertically reorient while sinking from surface turbulent waters to a more stable environment (i.e., under the seasonal pycnocline), (ii) segregate from incompatible partners (e.g., dead or different sized cells), and (iii) pair with other partners as a result of the hydrodynamic instabilities generated by collective cell sinking. This is, eminently, a cell abundance-dependent process, therefore being more effective when population sinking is synchronized. We suggest that this selective process, enabling matching of size-compatible healthy partners, could be fundamental in understanding sexual reproduction in pennate diatoms.


Assuntos
Diatomáceas/citologia , Movimento , Plâncton/citologia , Microfluídica , Reologia
4.
PLoS One ; 13(1): e0190278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324758

RESUMO

Survival during the settlement window is a limiting variable for recruitment. The survival is believed to be strongly determined by biological interactions and sea conditions, however it has been poorly investigated. We examined the settlement patterns related to relevant biotic and abiotic factors (i.e. Density-dependence, wind stress, wave height and coastal current velocity) potentially determining post-settler survival rates of a coastal necto-benthic fish of wide distribution in the Mediterranean and eastern Atlantic, the white seabream (Diplodus sargus). An observational study of the demography of juveniles of this species was carried out at six coves in Menorca Island (Balearic Islands, western Mediterranean). Three of the coves were located in the northern and wind exposed coast, at the Northeast (NE) side; while the other three were found along the southern and sheltered coast, at the Southwest (SW) side of the island. The settlement period extended from early May to late June and maximum juvenile densities at the sampling sites varied between 5 and 11 ind. m-1 with maximum values observed in late May simultaneously occurring in the two coasts. Our analysis of juvenile survival, based on the interpretation of the observed patters using an individual based model (IBM), revealed two stages in the size-mortality relationships. An initial density-dependent stage was observed for juveniles up to 20 mm TL, followed by a density independent stage when other factors dominated the survival at sizes > 20 mm TL. No significant environmental effects were observed for the small size class (<20mm TL). Different significant environmental effects affecting NE and SW coves were observed for the medium (20-30mm TL) and large (>30mm TL) size class. In the NE, the wind stress consistently affected the density of fish of 20-30 mm and >30 mm TL with a dome-shape effect with higher densities at intermediate values of wind stress and negative effect at the extremes. The best models applied in the SW coves showed a significant non-linear negative effect on fish density that was also consistent for both groups 20-30 mm and >30 mm TL. Higher densities were observed at low values of wave height in the two groups. Because of these variations, the number of juveniles present at the end of the period was unrelated to their initial density and average survival varied among locations. In consequence, recruitment was (1) primarily limited by denso-dependient procedures at settlement stage, and (2) by sea conditions at post-settlement, where extreme wave conditions depleted juveniles. Accordingly, regional hydrodynamic conditions during the settlement season produced significant impacts on the juvenile densities depending on their size and with contrasted effects in respectto cove orientation. The similar strength in larval supply between coves, in addition to the similar mean phenology for settlers in the north and south of the Island, suggests that all fish may come from the same parental reproductive pool. These factors should be taken into account when assessing relationships between settlers, recruits and adults of white seabream.


Assuntos
Ecossistema , Dourada/fisiologia , Animais , Mar Mediterrâneo , Taxa de Sobrevida
5.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28468919

RESUMO

Advection by ocean currents modifies phytoplankton size structure at small scales (1-10 cm) by aggregating cells in different regions of the flow depending on their size. This effect is caused by the inertia of the cells relative to the displaced fluid. It is considered that, at larger scales (greater than or equal to 1 km), biological processes regulate the heterogeneity in size structure. Here, we provide observational evidence of heterogeneity in phytoplankton size structure driven by ocean currents at relatively large scales (1-10 km). Our results reveal changes in the phytoplankton size distribution associated with the coastal circulation patterns. A numerical model that incorporates the inertial properties of phytoplankton confirms the role of advection on the distribution of phytoplankton according to their size except in areas with enhanced nutrient inputs where phytoplankton dynamics is ruled by other processes. The observed preferential concentration mechanism has important ecological consequences that range from the phytoplankton level to the whole ecosystem.


Assuntos
Ecossistema , Oceanos e Mares , Fitoplâncton/fisiologia
6.
Sci Total Environ ; 565: 191-199, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27163484

RESUMO

The environmental conditions of semi-enclosed coastal water-bodies are directly related to the catchment, human activities, and oceanographic setting in which they are located. As a result of low tidal forcing, and generally weak currents, waters in Mediterranean harbours are poorly renewed, leading to quality deterioration. Here, we characterise the seasonal variation of trace metals (i.e. Co, Cd, Cu, Fe, Mo, Ni, Pb, and Zn) in surface waters, and trace metal content in sediments from Maó Harbour, a semi-enclosed coastal ecosystem in the NW Mediterranean Sea. Our results show that most of the dissolved trace metals in the waters of Maó Harbour exhibit a marked inner-outer concentration gradient, suggesting a permanent input into the inner part of the harbour. In general, metal concentrations in the waters of Maó Harbour are higher than those in offshore waters. Concentration of Cu (21±8nM), Fe (9.2±3.2nM) and Pb (1.3±0.4nM) are particularly high when compared with other coastal areas of the Mediterranean Sea. The concentration of some metals such as Cu and Zn increases during summertime, when the human population and boat traffic increase during the tourism season, and when resuspension from the metal enriched sediments is higher. The evaluation of the metal sources in the harbour reveals that, compared with other putative sources such as runoff, aerosol deposition and fresh groundwater discharges, contaminated sediments are the main source of the metals found in the water column, most likely through vessel-driven resuspension events. This study contributes to the understanding of the processes that control the occurrence and distribution of trace metals in Maó Harbour, thus aiding in the effective management of the harbour, and enhancing the overall quality of the seawater ecosystem.


Assuntos
Sedimentos Geológicos/química , Água do Mar/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Mar Mediterrâneo , Estações do Ano , Espanha
7.
Environ Sci Technol ; 48(20): 11819-27, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25215451

RESUMO

Submarine groundwater discharge (SGD) and derived nutrient (NO2(-), NO3(-), NH4(+), PO4(3-), and SiO2) and trace element (Cd, Co, Cu, Fe, Mo, Ni, Pb, V and Zn) loadings to the coastal sea were systematically assessed along the coast of Majorca Island, Spain, in a general survey around the island and in three representative coves during 2010. We estimated that brackish water discharges through the shoreline are important contributors to the DIN, SiO2, Fe, and Zn budgets of the nearshore waters. Furthermore, our results showed that SGD-derived elements are conditioned by the hydrogeological formations of the aquifer and discharge type. Thus, while rapid discharges through karstic conduits are enriched in SiO2 and Zn, the large detrital aquifers of the island typically present enhanced concentrations of Fe. The estimated total annual inputs of chemicals constituents discharged by SGD to the coastal waters were as follows: DIN: 610 × 10(3) kg yr(-1), SiO2: 1400 × 10(3) kg yr(-1), Fe: 3.2 × 10(3) kg yr(-1), and Zn: 2.0 × 10(3) kg yr(-1). Our results provide evidence that SGD is a major contributor to the dissolved pool of inorganic nutrients and trace metals in the nearshore waters of Majorca.


Assuntos
Ecossistema , Água Subterrânea/química , Ilhas , Metais/análise , Poluentes Químicos da Água/análise , Clorofila/análise , Clorofila A , Coleta de Dados , Geografia , Rádio (Elemento)/análise , Salinidade , Espanha
8.
PLoS One ; 8(6): e65451, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755233

RESUMO

A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO2 and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6-577.5 ng L⁻¹ BZ-3; 51.4-113.4 ng L⁻¹ 4-MBC; 6.9-37.6 µg L⁻¹ Ti; 1.0-3.3 µg L⁻¹ Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC50 = 125±71 mg L⁻¹). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO4³â» is released by these products in notable amounts (up to 17 µmol PO4³â»g⁻¹). We conservatively estimate an increase of up to 100% background PO4³â» concentrations (0.12 µmol L⁻¹ over a background level of 0.06 µmol L⁻¹) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem.


Assuntos
Água do Mar/química , Protetores Solares/farmacologia , Poluentes Químicos da Água/farmacologia , Benzofenonas/análise , Benzofenonas/química , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Humanos , Concentração Inibidora 50 , Cinética , Mar Mediterrâneo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Fosfatos/análise , Fosfatos/química , Água do Mar/análise , Espanha , Banho de Sol , Protetores Solares/análise , Protetores Solares/química , Titânio/análise , Titânio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Zinco/análise , Zinco/química
9.
Proc Natl Acad Sci U S A ; 109(52): 21246-9, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236141

RESUMO

Aerosol deposition plays an important role in climate and biogeochemical cycles by supplying nutrients to the open ocean, in turn stimulating ocean productivity and carbon sequestration. Aerosol particles also contain elements such as copper (Cu) that are essential in trace amounts for phytoplankton physiology but that can be toxic at high concentrations. Although the toxicity of Cu associated with aerosols has been demonstrated in bioassay experiments, extrapolation of these laboratory results to natural conditions is not straightforward. This study provides observational evidence of the negative effect of aerosols containing high Cu concentrations on marine phytoplankton over a vast region of the western Mediterranean Sea. Direct aerosol measurements were combined with satellite observations, resulting in the detection of significant declines in phytoplankton biomass after atmospheric aerosol events characterized by high Cu concentrations. The declines were more evident during summer, when nanoflagellates predominate in the phytoplankton population and stratification and oligotrophic conditions prevail in the study region. Together with previous findings concerning atmospheric Cu deposition, these results demonstrate that the toxicity of Cu-rich aerosols can involve large areas of the world's oceans. Moreover, they highlight the present vulnerability of oceanic ecosystems to Cu-rich aerosols of anthropogenic origins. Because anthropogenic emissions are increasing, large-scale negative effects on marine ecosystems can be anticipated.


Assuntos
Aerossóis/farmacologia , Cobre/farmacologia , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Clorofila/metabolismo , Mar Mediterrâneo , Comunicações Via Satélite
10.
Proc Biol Sci ; 279(1726): 129-38, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21593032

RESUMO

The toxin-producing microbial species Alexandrium minutum has a wide distribution in the Mediterranean Sea and causes high biomass blooms with consequences on the environment, human health and coastal-related economic activities. Comprehension of algal genetic differences and associated connectivity is fundamental to understand the geographical scale of adaptation and dispersal pathways of harmful microalgal species. In the present study, we combine A. minutum population genetic analyses based on microsatellites with indirect connectivity (C(i)) estimations derived from a general circulation model of the Mediterranean sea. Our results show that four major clusters of genetically homogeneous groups can be identified, loosely corresponding to four regional seas: Adriatic, Ionian, Tyrrhenian and Catalan. Each of the four clusters included a small fraction of mixed and allochthonous genotypes from other Mediterranean areas, but the assignment to one of the four clusters was sufficiently robust as proved by the high ancestry coefficient values displayed by most of the individuals (>84%). The population structure of A. minutum on this scale can be explained by microalgal dispersion following the main regional circulation patterns over successive generations. We hypothesize that limited connectivity among the A. minutum populations results in low gene flow but not in the erosion of variability within the population, as indicated by the high gene diversity values. This study represents a first and new integrated approach, combining both genetic and numerical methods, to characterize and interpret the population structure of a toxic microalgal species. This approach of characterizing genetic population structure and connectivity at a regional scale holds promise for the control and management of the harmful algal bloom events in the Mediterranean Sea.


Assuntos
Dinoflagellida/genética , Fluxo Gênico , Repetições de Microssatélites , Oceano Atlântico , Variação Genética , Genótipo , Itália , Mar Mediterrâneo , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Dinâmica Populacional , Análise de Sequência de DNA , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA