Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 284, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500079

RESUMO

Climate change is a threat to sustainable livestock production and livelihoods in the tropics. It has adverse impacts on feed and water availability, disease prevalence, production, environmental temperature, and biodiversity. Unravelling the drivers of local adaptation and understanding the underlying genetic variation in random mating indigenous livestock populations informs the design of genetic improvement programmes that aim to increase productivity and resilience. In the present study, we combined environmental, genomic, and phenotypic information of Ethiopian indigenous chickens to investigate their environmental adaptability. Through a hybrid sampling strategy, we captured wide biological and ecological variabilities across the country. Our environmental dataset comprised mean values of 34 climatic, vegetation and soil variables collected over a thirty-year period for 260 geolocations. Our biological dataset included whole genome sequences and quantitative measurements (on eight traits) from 513 individuals, representing 26 chicken populations spread along 4 elevational gradients (6-7 populations per gradient). We performed signatures of selection analyses ([Formula: see text] and XP-EHH) to detect footprints of natural selection, and redundancy analyses (RDA) to determine genotype-environment and genotype-phenotype-associations. RDA identified 1909 outlier SNPs linked with six environmental predictors, which have the highest contributions as ecological drivers of adaptive phenotypic variation. The same method detected 2430 outlier SNPs that are associated with five traits. A large overlap has been observed between signatures of selection identified by[Formula: see text]and XP-EHH showing that both methods target similar selective sweep regions. Average genetic differences measured by [Formula: see text] are low between gradients, but XP-EHH signals are the strongest between agroecologies. Genes in the calcium signalling pathway, those associated with the hypoxia-inducible factor (HIF) transcription factors, and sports performance (GALNTL6) are under selection in high-altitude populations. Our study underscores the relevance of landscape genomics as a powerful interdisciplinary approach to dissect adaptive phenotypic and genetic variation in random mating indigenous livestock populations.


Assuntos
Galinhas , Genômica , Humanos , Animais , Galinhas/genética , Genômica/métodos , Genótipo , Genoma , Seleção Genética , Polimorfismo de Nucleotídeo Único , Variação Genética
2.
Animals (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835727

RESUMO

Ethiopia is a developing nation that could highly benefit from securing food via improved smallholder poultry farming. To support farmer and breeding decisions regarding which chicken strain to use in which Ethiopian environment, G*E analyses for body weight (BW) of growing male and female chickens were conducted. Research questions were (1) if a G*E is present for BW and (2) which strain performs best in which environment in terms of predicted BW. Analyses were performed using predicted BW at four different ages (90, 120, 150, and 180 days) of five strains (Horro, Koekoek, Kuroiler, Sasso-Rhode Island Red (S-RIR), and Sasso) tested in five Ethiopian regions (Addis Ababa, Amhara, Oromia, South Region, and Tigray) that are part of three Agro-Ecological Zones (AEZ) (cool humid, cool sub-humid, and warm semi-arid). The indigenous Horro strain was used as a control group to compare four other introduced tropically adapted strains. The dataset consisted of 999 female and 989 male farm-average BW measurements. G*E was strongly present (p < 0.001) for all combinations of strain and region analyzed. In line with previous research, Sasso was shown to have the highest predicted BW, especially at an early age, followed by Kuroiler. Horro had the lowest predicted BW at most ages and in most regions, potentially due to its young breeding program. The highest predicted BW were observed in Tigray, Oromia, and Amhara regions, which are in the main part of the cool sub-humid AEZ.

3.
Front Genet ; 12: 723360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567075

RESUMO

Smallholder poultry production dominated by indigenous chickens is an important source of livelihoods for most rural households in Ethiopia. The long history of domestication and the presence of diverse agroecologies in Ethiopia create unique opportunities to study the effect of environmental selective pressures. Species distribution models (SDMs) and Phenotypic distribution models (PDMs) can be applied to investigate the relationship between environmental variation and phenotypic differentiation in wild animals and domestic populations. In the present study we used SDMs and PDMs to detect environmental variables related with habitat suitability and phenotypic differentiation among nondescript Ethiopian indigenous chicken populations. 34 environmental variables (climatic, soil, and vegetation) and 19 quantitative traits were analyzed for 513 adult chickens from 26 populations. To have high variation in the dataset for phenotypic and ecological parameters, animals were sampled from four spatial gradients (each represented by six to seven populations), located in different climatic zones and geographies. Three different ecotypes are proposed based on correlation test between habitat suitability maps and phenotypic clustering of sample populations. These specific ecotypes show phenotypic differentiation, likely in response to environmental selective pressures. Nine environmental variables with the highest contribution to habitat suitability are identified. The relationship between quantitative traits and a few of the environmental variables associated with habitat suitability is non-linear. Our results highlight the benefits of integrating species and phenotypic distribution modeling approaches in characterization of livestock populations, delineation of suitable habitats for specific breeds, and understanding of the relationship between ecological variables and quantitative traits, and underlying evolutionary processes.

4.
BMC Genomics ; 22(1): 426, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107887

RESUMO

BACKGROUND: Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population. RESULTS: In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage. CONCLUSIONS: There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components.


Assuntos
Ciclídeos , Estudo de Associação Genômica Ampla , Animais , Ciclídeos/genética , Ligação Genética , Genótipo , Oxigênio
5.
Front Physiol ; 11: 759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733272

RESUMO

The aim of this study was to investigate swimming performance and oxygen consumption as non-lethal indicator traits of production parameters in Atlantic salmon Salmo salar L. and Gilthead seabream Sparus aurata L. A total of 34 individual fish of each species were subjected to a series of experiments: (1) a critical swimming speed (Ucrit) test in a swim-gutter, followed by (2) two starvation-refeeding periods of 42 days, and (3) swimming performance experiments coupled to respirometry in swim-tunnels. Ucrit was assessed first to test it as a predictor trait. Starvation-refeeding traits included body weight; feed conversion ratio based on dry matter; residual feed intake; average daily weight gain and loss. Swim-tunnel respirometry provided oxygen consumption in rest and while swimming at the different speeds, optimal swim speed and minimal cost of transport (COT). After experiments, fish were dissected and measured for tissue weights and body composition in terms of dry matter, ash, fat, protein and moist, and energy content. The Ucrit test design was able to provide individual Ucrit values in high throughput manner. The residual Ucrit (RUcrit) should be considered in order to remove the size dependency of swimming performance. Most importantly, RUcrit predicted filet yield in both species. The minimal COT, the oxygen consumption when swimming at Uopt, added predictive value to the seabream model for feed intake.

6.
J Anim Sci ; 98(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017843

RESUMO

Breeding programs for different species aim to improve performance by testing members of full-sib (FS) and half-sib (HS) families in different environments. When genotypes respond differently to changes in the environment, this is defined as genotype by environment (G × E) interaction. The presence of common environmental effects within families generates covariance between siblings, and these effects should be taken into account when estimating a genetic correlation. Therefore, an optimal design should be established to accurately estimate the genetic correlation between environments in the presence of common environmental effects. We used stochastic simulation to find the optimal population structure using a combination of FS and HS groups with different levels of common environmental effects. Results show that in a population with a constant population size of 2,000 individuals per environment, ignoring common environmental effects when they are present in the population will lead to an upward bias in the estimated genetic correlation of on average 0.3 when the true genetic correlation is 0.5. When no common environmental effects are present in the population, the lowest standard error (SE) of the estimated genetic correlation was observed with a mating ratio of one dam per sire, and 10 offspring per sire per environment. When common environmental effects are present in the population and are included in the model, the lowest SE is obtained with mating ratios of at least 5 dams per sire and with a minimum number of 10 offspring per sire per environment. We recommend that studies that aim to estimate the magnitude of G × E in pigs, chicken, and fish should acknowledge the potential presence of common environmental effects and adjust the mating ratio accordingly.


Assuntos
Galinhas/genética , Simulação por Computador , Peixes/genética , Interação Gene-Ambiente , Modelos Genéticos , Suínos/genética , Animais , Cruzamento , Feminino , Genótipo , Masculino , Software , Processos Estocásticos
7.
Genet Sel Evol ; 51(1): 68, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752665

RESUMO

After publication of this work [1], we noticed that there was an error: the formula to calculate the standard error of the estimated correlation.

8.
Genet Sel Evol ; 51(1): 64, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730478

RESUMO

BACKGROUND: Phenotypic records of group means or group sums are a good alternative to individual records for some difficult to measure, but economically important traits such as feed efficiency or egg production. Accuracy of predicted breeding values based on group records increases with increasing relationships between group members. The classical way to form groups with more closely-related animals is based on pedigree information. When genotyping information is available before phenotyping, its use to form groups may further increase the accuracy of prediction from group records. This study analyzed two grouping methods based on genomic information: (1) unsupervised clustering implemented in the STRUCTURE software and (2) supervised clustering that models genomic relationships. RESULTS: Using genomic best linear unbiased prediction (GBLUP) models, estimates of the genetic variance based on group records were consistent with those based on individual records. When genomic information was available to constitute the groups, genomic relationship coefficients between group members were higher than when random grouping of paternal half-sibs and of full-sibs was applied. Grouping methods that are based on genomic information resulted in higher accuracy of genomic estimated breeding values (GEBV) prediction compared to random grouping. The increase was ~ 1.5% for full-sibs and ~ 11.5% for paternal half-sibs. In addition, grouping methods that are based on genomic information led to lower coancestry coefficients between the top animals ranked by GEBV. Of the two proposed methods, supervised clustering was superior in terms of accuracy, computation requirements and applicability. By adding surplus genotyped offspring (more genotyped offspring than required to fill the groups), the advantage of supervised clustering increased by up to 4.5% compared to random grouping of full-sibs, and by 14.7% compared to random grouping of paternal half-sibs. This advantage also increased with increasing family sizes or decreasing genome sizes. CONCLUSIONS: The use of genotyping information for grouping animals increases the accuracy of selection when phenotypic group records are used in genomic selection breeding programs.


Assuntos
Cruzamento/métodos , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Animais , Viés , Cruzamento/normas , Galinhas/genética , Estudo de Associação Genômica Ampla/normas , Genótipo , Linhagem , Fenótipo , Aprendizado de Máquina não Supervisionado
9.
Genet Sel Evol ; 51(1): 50, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533614

RESUMO

BACKGROUND: The increase in accuracy of prediction by using genomic information has been well-documented. However, benefits of the use of genomic information and methodology for genetic evaluations are missing when genotype-by-environment interactions (G × E) exist between bio-secure breeding (B) environments and commercial production (C) environments. In this study, we explored (1) G × E interactions for broiler body weight (BW) at weeks 5 and 6, and (2) the benefits of using genomic information for prediction of BW traits when selection candidates were raised and tested in a B environment and close relatives were tested in a C environment. METHODS: A pedigree-based best linear unbiased prediction (BLUP) multivariate model was used to estimate variance components and predict breeding values (EBV) of BW traits at weeks 5 and 6 measured in B and C environments. A single-step genomic BLUP (ssGBLUP) model that combined pedigree and genomic information was used to predict EBV. Cross-validations were based on correlation, mean difference and regression slope statistics for EBV that were estimated from full and reduced datasets. These statistics are indicators of population accuracy, bias and dispersion of prediction for EBV of traits measured in B and C environments. Validation animals were genotyped and non-genotyped birds in the B environment only. RESULTS: Several indications of G × E interactions due to environmental differences were found for BW traits including significant re-ranking, heterogeneous variances and different heritabilities for BW measured in environments B and C. The genetic correlations between BW traits measured in environments B and C ranged from 0.48 to 0.54. The use of combined pedigree and genomic information increased population accuracy of EBV, and reduced bias of EBV prediction for genotyped birds compared to the use of pedigree information only. A slight increase in accuracy of EBV was also observed for non-genotyped birds, but the bias of EBV prediction increased for non-genotyped birds. CONCLUSIONS: The G × E interaction was strong for BW traits of broilers measured in environments B and C. The use of combined pedigree and genomic information increased population accuracy of EBV substantially for genotyped birds in the B environment compared to the use of pedigree information only.


Assuntos
Peso Corporal/genética , Galinhas/genética , Interação Gene-Ambiente , Modelos Genéticos , Animais , Cruzamento , Galinhas/crescimento & desenvolvimento , Feminino , Genômica , Masculino , Modelos Estatísticos
10.
J Anim Sci ; 97(9): 3648-3657, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31278865

RESUMO

In pig breeding, selection commonly takes place in purebred (PB) pigs raised mainly in temperate climates (TEMP) under optimal environmental conditions in nucleus farms. However, pork production typically makes use of crossbred (CB) animals raised in nonstandardized commercial farms, which are located not only in TEMP regions but also in tropical and subtropical regions (TROP). Besides the differences in the genetic background of PB and CB, differences in climate conditions, and differences between nucleus and commercial farms can lower the genetic correlation between the performance of PB in the TEMP (PBTEMP) and CB in the TROP (CBTROP). Genetic correlations (rg) between the performance of PB and CB growing-finishing pigs in TROP and TEMP environments have not been reported yet, due to the scarcity of data in both CB and TROP. Therefore, the present study aimed 1) to verify the presence of genotype × environment interaction (G × E) and 2) to estimate the rg for carcass and growth performance traits when PB and 3-way CB pigs are raised in 2 different climatic environments (TROP and TEMP). Phenotypic records of 217,332 PB and 195,978 CB, representing 2 climatic environments: TROP (Brazil) and TEMP (Canada, France, and the Netherlands) were available for this study. The PB population consisted of 2 sire lines, and the CB population consisted of terminal 3-way cross progeny generated by crossing sires from one of the PB sire lines with commercially available 2-way maternal sow crosses. G × E appears to be present for average daily gain, protein deposition, and muscle depth given the rg estimates between PB in both environments (0.64 to 0.79). With the presence of G × E, phenotypes should be collected in TROP when the objective is to improve the performance of CB in the TROP. Also, based on the rg estimates between PBTEMP and CBTROP (0.22 to 0.25), and on the expected responses to selection, selecting based only on the performance of PBTEMP would give limited genetic progress in the CBTROP. The rg estimates between PBTROP and CBTROP are high (0.80 to 0.99), suggesting that combined crossbred-purebred selection schemes would probably not be necessary to increase genetic progress in CBTROP. However, the calculated responses to selection show that when the objective is the improvement of CBTROP, direct selection based on the performance of CBTROP has the potential to lead to the higher genetic progress compared with indirect selection on the performance of PBTROP.


Assuntos
Interação Gene-Ambiente , Suínos/genética , Animais , Brasil , Cruzamento , Canadá , Cruzamentos Genéticos , Feminino , França , Genótipo , Masculino , Países Baixos , Fenótipo , Suínos/crescimento & desenvolvimento , Suínos/fisiologia
11.
J Anim Sci ; 97(1): 156-171, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321346

RESUMO

Genetic improvement of animals plays an important role in improving the economic and environmental sustainability of livestock production systems. This paper proposes a method to incorporate mitigation of environmental impacts and risk preferences of producers into a breeding objective via economic values (EVs). The paper assesses the effects of using these alternative EVs of breeding goal traits on discounted economic response to selection and on environmental impacts at commercial farm level. The application focuses on a Brazilian pig production system. Separate dam- and sire-line breeding programs that supply parents in a 3-tier production system for producing crossbreds (fattening pigs) at commercial level were assumed. Using EVs that are derived from utility functions by incorporating risk aversion increases the cumulative discounted economic response to selection in sire-line selection (6%) while reducing response in dam-line selection (12%) compared with the use of traditional EVs. The use of EVs that include environmental costs increases the cumulative discounted social response to selection in both dam-line (5%) and sire-line (10%) selections. Emission of greenhouse gases, and excretion of nitrogen and phosphorus can be reduced more with genetic improvements of production traits than reproduction traits for the typical Brazilian farrow-to-finish pig farm. Reductions in environmental impacts do not, however, depend on the use of the different EVs (i.e., with and without taking into account environmental costs and risk). Both environmental costs and risk preferences of producers need to be considered in sire-line selection, and only environmental costs in dam-line selection to improve, at the same time, the economic and environmental sustainability of the Brazilian pig production system.


Assuntos
Meio Ambiente , Nitrogênio/metabolismo , Fósforo/metabolismo , Reprodução , Seleção Genética , Suínos/fisiologia , Animais , Brasil , Cruzamento/economia , Fazendas/economia , Feminino , Masculino , Fenótipo , Risco , Suínos/genética
12.
Genet Sel Evol ; 50(1): 40, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081822

RESUMO

BACKGROUND: In recent years, there has been increased interest in the study of the molecular processes that affect semen traits. In this study, our aim was to identify quantitative trait loci (QTL) regions associated with four semen traits (motility, progressive motility, number of sperm cells per ejaculate and total morphological defects) in two commercial pig lines (L1: Large White type and L2: Landrace type). Since the number of animals with both phenotypes and genotypes was relatively small in our dataset, we conducted a weighted single-step genome-wide association study, which also allows unequal variances for single nucleotide polymorphisms. In addition, our aim was also to identify candidate genes within QTL regions that explained the highest proportions of genetic variance. Subsequently, we performed gene network analyses to investigate the biological processes shared by genes that were identified for the same semen traits across lines. RESULTS: We identified QTL regions that explained up to 10.8% of the genetic variance of the semen traits on 12 chromosomes in L1 and 11 chromosomes in L2. Sixteen QTL regions in L1 and six QTL regions in L2 were associated with two or more traits within the population. Candidate genes SCN8A, PTGS2, PLA2G4A, DNAI2, IQCG and LOC102167830 were identified in L1 and NME5, AZIN2, SPATA7, METTL3 and HPGDS in L2. No regions overlapped between these two lines. However, the gene network analysis for progressive motility revealed two genes in L1 (PLA2G4A and PTGS2) and one gene in L2 (HPGDS) that were involved in two biological processes i.e. eicosanoid biosynthesis and arachidonic acid metabolism. PTGS2 and HPGDS were also involved in the cyclooxygenase pathway. CONCLUSIONS: We identified several QTL regions associated with semen traits in two pig lines, which confirms the assumption of a complex genetic determinism for these traits. A large part of the genetic variance of the semen traits under study was explained by different genes in the two evaluated lines. Nevertheless, the gene network analysis revealed candidate genes that are involved in shared biological pathways that occur in mammalian testes, in both lines.


Assuntos
Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Sus scrofa/genética , Animais , Cromossomos/genética , Bases de Dados Genéticas , Estudos de Associação Genética , Masculino , Polimorfismo de Nucleotídeo Único , Sêmen , Suínos
13.
Genet Sel Evol ; 50(1): 18, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661133

RESUMO

BACKGROUND: Genome editing technologies provide new tools for genetic improvement and have the potential to become the next game changer in animal and plant breeding. The aim of this study was to investigate how genome editing in combination with genomic selection can accelerate the introduction of a monogenic trait in a livestock population as compared to genomic selection alone. METHODS: A breeding population was simulated under genomic selection for a polygenic trait. After reaching Bulmer equilibrium, the selection objective was to increase the allele frequency of a monogenic trait, with or without genome editing, in addition to improving the polygenic trait. Scenarios were compared for time to fixation of the desired allele, selection response for the polygenic trait, and level of inbreeding. The costs, in terms of number of editing procedures, were compared to the benefits of having more animals with the desired phenotype of the monogenic trait. Effects of reduced editing efficiency were investigated. RESULTS: In a population of 20,000 selection candidates per generation, the total number of edited zygotes needed to reach fixation of the desired allele was 22,118, 7072, or 3912 with, no, moderate, or high selection emphasis on the monogenic trait, respectively. Genome editing resulted in up to four-fold faster fixation of the desired allele when efficiency was 100%, while the loss in long-term selection response for the polygenic trait was up to seven-fold less compared to genomic selection alone. With moderate selection emphasis on the monogenic trait, introduction of genome editing led to a four-fold reduction in the total number of animals showing the undesired phenotype before fixation. However, with a currently realistic editing efficiency of 4%, the number of required editing procedures increased by 72% and loss in selection response increased eight-fold compared to 100% efficiency. With low efficiency, loss in selection response was 29% more compared to genomic selection alone. CONCLUSIONS: Genome editing strongly decreased the time to fixation for a desired allele compared to genomic selection alone. Reduced editing efficiency had a major impact on the number of editing procedures and on the loss in selection response. In addition to ethical and welfare considerations of genome editing, a careful assessment of its technical costs and benefits is required.


Assuntos
Edição de Genes/veterinária , Gado/genética , Locos de Características Quantitativas , Seleção Genética , Animais , Cruzamento , Bovinos , Feminino , Frequência do Gene , Endogamia , Masculino
14.
Genet Sel Evol ; 49(1): 93, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29281961

RESUMO

After publication of our article [1], we found a typo in the formula to build the genomic relationship matrix using allele frequencies across all genotyped pigs (matrix) and the genomic relationship matrix using breed-specific allele frequencies (matrix), and we noted that the description to this formula is not very clear.

15.
Genet Sel Evol ; 49(1): 75, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061123

RESUMO

BACKGROUND: Genomic prediction of purebred animals for crossbred performance can be based on a model that estimates effects of single nucleotide polymorphisms (SNPs) in purebreds on crossbred performance. For crossbred performance, SNP effects might be breed-specific due to differences between breeds in allele frequencies and linkage disequilibrium patterns between SNPs and quantitative trait loci. Accurately tracing the breed-of-origin of alleles (BOA) in three-way crosses is possible with a recently developed procedure called BOA. A model that accounts for breed-specific SNP effects (BOA model), has never been tested empirically on a three-way crossbreeding scheme. Therefore, the objectives of this study were to evaluate the estimates of variance components and the predictive accuracy of the BOA model compared to models in which SNP effects for crossbred performance were assumed to be the same across breeds, using either breed-specific allele frequencies ([Formula: see text] model) or allele frequencies averaged across breeds ([Formula: see text] model). In this study, we used data from purebred and three-way crossbred pigs on average daily gain (ADG), back fat thickness (BF), and loin depth (LD). RESULTS: Estimates of variance components for crossbred performance from the BOA model were mostly similar to estimates from models [Formula: see text] and [Formula: see text]. Heritabilities for crossbred performance ranged from 0.24 to 0.46 between traits. Genetic correlations between purebred and crossbred performance ([Formula: see text]) across breeds ranged from 0.30 to 0.62 for ADG and from 0.53 to 0.74 for BF and LD. For ADG, prediction accuracies of the BOA model were higher than those of the [Formula: see text] and [Formula: see text] models, with significantly higher accuracies only for one maternal breed. For BF and LD, prediction accuracies of models [Formula: see text] and [Formula: see text] were higher than those of the BOA model, with no significant differences. Across all traits, models [Formula: see text] and [Formula: see text] yielded similar predictions. CONCLUSIONS: The BOA model yielded a higher prediction accuracy for ADG in one maternal breed, which had the lowest [Formula: see text] (0.30). Using the BOA model was especially relevant for traits with a low [Formula: see text]. In all other cases, the use of crossbred information in models [Formula: see text] and [Formula: see text], does not jeopardize predictions and these models are more easily implemented than the BOA model.


Assuntos
Alelos , Hibridização Genética , Modelos Genéticos , Linhagem , Seleção Artificial , Animais , Polimorfismo de Nucleotídeo Único , Suínos/genética
16.
Genet Sel Evol ; 49(1): 51, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651536

RESUMO

BACKGROUND: Breed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The traits evaluated were litter size (LS) and gestation length (GL) in pigs. RESULTS: The genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The highest prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was similar to the accuracy of GS DGV (0.53 and 0.52, respectively). CONCLUSIONS: In this study, training on crossbred data resulted in higher prediction accuracy than training on purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with a lower genetic correlation between purebred and crossbred performance should be included to further assess the value of the BS model in genomic predictions.


Assuntos
Cruzamento , Genoma/genética , Modelos Genéticos , Alelos , Animais , Feminino , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodutibilidade dos Testes , Seleção Genética , Suínos
17.
BMC Genomics ; 17(1): 839, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793082

RESUMO

BACKGROUND: Inbreeding and population bottlenecks in the ancestry of Friesian horses has led to health issues such as dwarfism. The limbs of dwarfs are short and the ribs are protruding inwards at the costochondral junction, while the head and back appear normal. A striking feature of the condition is the flexor tendon laxity that leads to hyperextension of the fetlock joints. The growth plates of dwarfs display disorganized and thickened chondrocyte columns. The aim of this study was to identify the gene defect that causes the recessively inherited trait in Friesian horses to understand the disease process at the molecular level. RESULTS: We have localized the genetic cause of the dwarfism phenotype by a genome wide approach to a 3 Mb region on the p-arm of equine chromosome 14. The DNA of two dwarfs and one control Friesian horse was sequenced completely and we identified the missense mutation ECA14:g.4535550C > T that cosegregated with the phenotype in all Friesians analyzed. The mutation leads to the amino acid substitution p.(Arg17Lys) of xylosylprotein beta 1,4-galactosyltransferase 7 encoded by B4GALT7. The protein is one of the enzymes that synthesize the tetrasaccharide linker between protein and glycosaminoglycan moieties of proteoglycans of the extracellular matrix. The mutation not only affects a conserved arginine codon but also the last nucleotide of the first exon of the gene and we show that it impedes splicing of the primary transcript in cultured fibroblasts from a heterozygous horse. As a result, the level of B4GALT7 mRNA in fibroblasts from a dwarf is only 2 % compared to normal levels. Mutations in B4GALT7 in humans are associated with Ehlers-Danlos syndrome progeroid type 1 and Larsen of Reunion Island syndrome. Growth retardation and ligamentous laxity are common manifestations of these syndromes. CONCLUSIONS: We suggest that the identified mutation of equine B4GALT7 leads to the typical dwarfism phenotype in Friesian horses due to deficient splicing of transcripts of the gene. The mutated gene implicates the extracellular matrix in the regular organization of chrondrocyte columns of the growth plate. Conservation of individual amino acids may not be necessary at the protein level but instead may reflect underlying conservation of nucleotide sequence that are required for efficient splicing.


Assuntos
Nanismo/veterinária , Galactosiltransferases/genética , Doenças dos Cavalos/genética , Instabilidade Articular/genética , Mutação , Sítios de Splice de RNA , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Feminino , Estudos de Associação Genética , Cavalos , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Genet Sel Evol ; 48(1): 61, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549177

RESUMO

BACKGROUND: For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. RESULTS: The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. CONCLUSIONS: The BOA approach accurately assigns breed origin to alleles of crossbred animals, even if their pedigree is not recorded.


Assuntos
Cruzamento , Genômica/métodos , Hibridização Genética , Gado/genética , Modelos Genéticos , Alelos , Animais , Simulação por Computador , Feminino , Genótipo , Haplótipos , Desequilíbrio de Ligação , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sus scrofa/genética
19.
Genet Sel Evol ; 48(1): 55, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27491547

RESUMO

BACKGROUND: Although breeding programs for pigs and poultry aim at improving crossbred performance, they mainly use training populations that consist of purebred animals. For some traits, e.g. residual feed intake, the genetic correlation between purebred and crossbred performance is low and thus including crossbred animals in the training population is required. With crossbred animals, the effects of single nucleotide polymorphisms (SNPs) may be breed-specific because linkage disequilibrium patterns between a SNP and a quantitative trait locus (QTL), and allele frequencies and allele substitution effects of a QTL may differ between breeds. To estimate the breed-specific effects of alleles in a crossbred population, the breed-of-origin of alleles in crossbred animals must be known. This study was aimed at investigating the performance of an approach that assigns breed-of-origin of alleles in real data of three-breed cross pigs. Genotypic data were available for 14,187 purebred, 1354 F1, and 1723 three-breed cross pigs. RESULTS: On average, 93.0 % of the alleles of three-breed cross pigs were assigned a breed-of-origin without using pedigree information and 94.6 % with using pedigree information. The assignment percentage could be improved by allowing a percentage (fr) of the copies of a haplotype to be observed in a purebred population different from the assigned breed-of-origin. Changing fr from 0 to 20 %, increased assignment of breed-of-origin by 0.6 and 0.7 % when pedigree information was and was not used, respectively, which indicates the benefit of setting fr to 20 %. CONCLUSIONS: Breed-of-origin of alleles of three-breed cross pigs can be derived empirically without the need for pedigree information, with 93.7 % of the alleles assigned a breed-of-origin. Pedigree information is useful to reduce computation time and can slightly increase the percentage of assignments. Knowledge on the breed-of-origin of alleles allows the use of models that implement breed-specific effects of SNP alleles in genomic prediction, with the aim of improving selection of purebred animals for crossbred offspring performance.


Assuntos
Alelos , Cruzamento , Sus scrofa/genética , Animais , Cruzamentos Genéticos , Frequência do Gene , Genótipo , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Locos de Características Quantitativas
20.
Genet Sel Evol ; 48: 9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830357

RESUMO

BACKGROUND: Reproductive traits such as number of stillborn piglets (SB) and number of teats (NT) have been evaluated in many genome-wide association studies (GWAS). Most of these GWAS were performed under the assumption that these traits were normally distributed. However, both SB and NT are discrete (e.g. count) variables. Therefore, it is necessary to test for better fit of other appropriate statistical models based on discrete distributions. In addition, although many GWAS have been performed, the biological meaning of the identified candidate genes, as well as their functional relationships still need to be better understood. Here, we performed and tested a Bayesian treatment of a GWAS model assuming a Poisson distribution for SB and NT in a commercial pig line. To explore the biological role of the genes that underlie SB and NT and identify the most likely candidate genes, we used the most significant single nucleotide polymorphisms (SNPs), to collect related genes and generated gene-transcription factor (TF) networks. RESULTS: Comparisons of the Poisson and Gaussian distributions showed that the Poisson model was appropriate for SB, while the Gaussian was appropriate for NT. The fitted GWAS models indicated 18 and 65 significant SNPs with one and nine quantitative trait locus (QTL) regions within which 18 and 57 related genes were identified for SB and NT, respectively. Based on the related TF, we selected the most representative TF for each trait and constructed a gene-TF network of gene-gene interactions and identified new candidate genes. CONCLUSIONS: Our comparative analyses showed that the Poisson model presented the best fit for SB. Thus, to increase the accuracy of GWAS, counting models should be considered for this kind of trait. We identified multiple candidate genes (e.g. PTP4A2, NPHP1, and CYP24A1 for SB and YLPM1, SYNDIG1L, TGFB3, and VRTN for NT) and TF (e.g. NF-κB and KLF4 for SB and SOX9 and ELF5 for NT), which were consistent with known newborn survival traits (e.g. congenital heart disease in fetuses and kidney diseases and diabetes in the mother) and mammary gland biology (e.g. mammary gland development and body length).


Assuntos
Teorema de Bayes , Estudo de Associação Genômica Ampla , Reprodução/genética , Sus scrofa/genética , Animais , Feminino , Redes Reguladoras de Genes , Genótipo , Distribuição Normal , Fenótipo , Distribuição de Poisson , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...