Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ann Bot ; 130(4): 547-560, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947944

RESUMO

BACKGROUND AND AIMS: Decomposition is a major ecosystem process which improves soil quality. Despite that, only a few studies have analysed decomposition in an agricultural context, while most agrosystems (e.g. vineyards) are facing decreasing soil quality. The objective of this study is to understand the impacts of both pedoclimate and weed management on the mass loss of vineyard weed communities during the early stages of the decomposition process through their functional properties. METHODS: In 16 Mediterranean vineyards representing both a pedoclimate and a soil management gradient, we measured the mass loss of green above-ground biomass of 50 weed communities during decomposition in standard conditions and key leaf traits of dominant species [e.g. leaf dry matter content (LDMC) and leaf lignin to nitrogen ratio (lignin:N)]. Both the mean [i.e. community-weighted mean (CWM)] and diversity (i.e. Rao index) were computed at the community level. Path analysis was used to quantify the effects of agro-environmental filters on the mass loss of weed communities through their functional properties. KEY RESULTS: Tillage and mowing filtered more decomposable communities than chemical weeding (16 and 8 % of higher mass loss after 2 months of decomposition). Path analysis selected weed management practice type as the main factor determining mass loss through its effect on functional properties, while soil and climate had minor and no effects, respectively. Chemical weeding favoured communities with higher investment in resistant leaves (e.g. 38 % higher lignin:N, 22 % lower leaf nitrogen content) which resulted in lower mass loss compared with tilled and mowed communities. Mowing favoured communities with 47 % higher biomass and with 46 % higher nitrogen content. CONCLUSIONS: Weed management significantly influenced weed mass loss, while the pedoclimate had little effect. Our results suggest that mowing is a promising alternative to herbicide use, favouring higher biomass, nitrogen content and decomposability potential of weeds.


Assuntos
Herbicidas , Solo , Ecossistema , Fazendas , Lignina , Nitrogênio/análise
2.
Data Brief ; 32: 106264, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32984461

RESUMO

This dataset presents 127 raw near infrared spectra of different organic samples acquired on three different spectrometers in three different labs. An example of data processing is shown to create six spectra transfer models between the three spectrometers (two by two). In order to build and validate these transfer models, the dataset was split into two sets of spectra: a first set was used to compute six spectra transfer models thanks to the Piecewise Direct standardisation function (PDS). A second set of spectra, independent of the first one was used to validate transfer models. Spectrum treatments and models were created on ChemFlow (https://vm-chemflow-francegrille.eu/), a free online chemometric software that includes all the necessary functions.

3.
Data Brief ; 31: 106013, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32715042

RESUMO

In the dataset presented in this article, sixty sugarcane samples were analyzed by eight visible / near infrared spectrometers including seven micro-spectrometers. There is one file per spectrometer with sample name, wavelength, absorbance data [calculated as log10 (1/Reflectance)], and another file for reference data, in order to assess the potential of the micro-spectrometers to predict chemical properties of sugarcane samples and to compare their performance with a LabSpec spectrometer. The Partial Least Square Regression (PLS-R) algorithm was used to build calibration models. This open access dataset could also be used to test new chemometric methods, for training, etc.

4.
Front Plant Sci ; 11: 224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194601

RESUMO

Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.

5.
Glob Chang Biol ; 26(1): 119-188, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891233

RESUMO

Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.


Assuntos
Acesso à Informação , Ecossistema , Biodiversidade , Ecologia , Plantas
6.
Front Plant Sci ; 8: 1516, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919904

RESUMO

Sorghum is increasingly used as a biomass crop worldwide. Its genetic diversity provides a large range of stem biochemical composition suitable for various end-uses as bioenergy or forage. Its drought tolerance enables it to reasonably sustain biomass production under water limited conditions. However, drought effect on the accumulation of sorghum stem biomass remains poorly understood which limits progress in crop improvement and management. This study aimed at identifying the morphological, biochemical and histological traits underlying biomass accumulation in the sorghum stem and its plasticity in response to water deficit. Two hybrids (G1, G4) different in stem biochemical composition (G4, more lignified, less sweet) were evaluated during 2 years in the field in Southern France, under two water treatments differentiated during stem elongation (irrigated; 1 month dry-down until an average soil water deficit of -8.85 bars). Plant phenology was observed weekly. At the end of the water treatment and at final harvest, plant height, stem and leaf dry-weight and the size, biochemical composition and tissue histology of internodes at 2-4 positions along the stem were measured. Stem biomass accumulation was significantly reduced by drought (in average 42% at the end of the dry-down). This was due to the reduction of the length, but not diameter, of the internodes expanded during water deficit. These internodes had more soluble sugar but lower lignin and cellulose contents. This was associated with a decrease of the areal proportion of lignified cell wall in internode outer zone whereas the areal proportion of this zone was not affected. All internodes for a given genotype and environment followed a common histochemical dynamics. Hemicellulose content and the areal proportion of inner vs. outer internode tissues were set up early during internode growth and were not drought responsive. G4 exhibited a higher drought sensitivity than G1 for plant height only. At final harvest, the stem dry weight was only 18% lower in water deficit (re-watered) compared to well-watered treatment and internodes growing during re-watering were similar to those on the well-watered plants. These results are being valorized to refine the phenotyping of sorghum diversity panels and breeding populations.

7.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27339049

RESUMO

In spite of their recognized ecological value, relatively little is known about the nutritional value of species-rich rangelands for herbivores. We investigated the sources of variation in dry matter digestibility (DMD), neutral detergent fibre content (NDF) and nitrogen concentration (NC) in plants from species-rich Mediterranean rangelands in southern France, and tested whether the dry matter content (DMC) was a good predictor of the forage quality of different plant parts. Sixteen plant species with contrasting growth forms (rosette, tussock, extensive and stemmed-herb) were studied, representative of two management regimes imposed in these rangelands: (i) fertilization and intensive grazing and (ii) non-fertilization and moderate grazing. Among the 16 plant species, four species were found in both treatments, allowing us to assess the intraspecific variability in forage quality and DMC across the treatments. The components of nutritional value (DMD, NDF and NC) as well as the DMC of leaves, stems and reproductive plant parts, were assessed at the beginning of the growing season and at peak standing biomass. All components of nutritional value and DMC were affected by species growth form: rosettes had higher DMD and NC than tussocks; the reverse being found for NDF and DMC. As the season progressed, DMD and NC of the different plant parts decreased while NDF and DMC increased for all species. DMC was negatively related to DMD and NC and positively to NDF, regardless of the source of variation (species, harvest date, management regime or plant part). Path analysis indicated that NDF was the main determinant of DMD. Better assessment of forage quality in species-rich systems requires consideration of their growth form composition. DMC of all plant parts, which is closely related to NDF, emerged as a good predictor and easily measured trait to estimate DMD in these species-rich systems.

8.
Genet Sel Evol ; 46: 38, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24917150

RESUMO

BACKGROUND: "Foie gras" is produced predominantly in France and about 90% of the commercialized product is obtained from male mule ducks. The melting rate (percentage of fat released during cooking) is the main criterion used to determine the quality of "foie gras". However, up to now the melting rate could not be predicted without causing liver damage, which means that selection programs could not use this criterion. METHODS: Fatty liver phenotypes were obtained for a population of over 1400 overfed male mule ducks. The phenotypes were based on two types of near-infrared spectra (on the liver surface and on ground liver) in order to predict the melting rate and liver composition (ash, dry matter, lipid and protein contents). Genetic parameters were computed in multiple traits with a "sire-dam" model and using a Gibbs sampling approach. RESULTS: The estimates for the genetic parameters show that the measured melting rate and the predicted melting rate obtained with two near-infrared spectrometer devices are genetically the same trait: genetic correlations are very high (ranging from +0.89 to +0.97 depending on the mule duck parental line and the spectrometer) and heritabilities are comparable. The predictions based on the spectra of ground liver samples using a laboratory spectrometer correlate with those based on the surface spectra using a portable spectrometer (from +0.83 to +0.95 for dry matter, lipid and protein content) and are particularly high for the melting rate (higher than +0.95). Although less accurate than the predictions obtained using the spectra of ground liver samples, the phenotypic prediction of the melting rate based on surface spectra is sufficiently accurate to be used by "foie gras" processors. CONCLUSIONS: Near-infrared spectrometry is an efficient tool to select liver quality in breeding programs because animals can be ranked according to their liver melting rate without damaging their livers. Thus, these original results will help breeders to select ducks based on the liver melting rate, a crucial criterion that defines the quality of the liver and for which there was previously no accurate predictor.


Assuntos
Patos/classificação , Patos/genética , Fígado Gorduroso/veterinária , Qualidade dos Alimentos , Espectroscopia de Luz Próxima ao Infravermelho/veterinária , Animais , Cruzamento , França , Masculino , Fenótipo
9.
Genet Sel Evol ; 46: 25, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24708200

RESUMO

BACKGROUND: Improving digestive efficiency is a major goal in poultry production, to reduce production costs, make possible the use of alternative feedstuffs and decrease the volume of manure produced. Since measuring digestive efficiency is difficult, identifying molecular markers associated with genes controlling this trait would be a valuable tool for selection. Detection of QTL (quantitative trait loci) was undertaken on 820 meat-type chickens in a F2 cross between D- and D+ lines divergently selected on low or high AMEn (apparent metabolizable energy value of diet corrected to 0 nitrogen balance) measured at three weeks in animals fed a low-quality diet. Birds were measured for 13 traits characterizing digestive efficiency (AMEn, coefficients of digestive utilization of starch, lipids, proteins and dry matter (CDUS, CDUL, CDUP, CDUDM)), anatomy of the digestive tract (relative weights of the proventriculus, gizzard and intestine and proventriculus plus gizzard (RPW, RGW, RIW, RPGW), relative length and density of the intestine (RIL, ID), ratio of proventriculus and gizzard to intestine weight (PG/I); and body weight at 23 days of age. Animals were genotyped for 6000 SNPs (single nucleotide polymorphisms) distributed on 28 autosomes, the Z chromosome and one unassigned linkage group. RESULTS: Nine QTL for digestive efficiency traits, 11 QTL for anatomy-related traits and two QTL for body weight at 23 days of age were detected. On chromosome 20, two significant QTL at the genome level co-localized for CDUS and CDUDM, i.e. two traits that are highly correlated genetically. Moreover, on chromosome 16, chromosome-wide QTL for AMEn, CDUS, CDUDM and CDUP, on chromosomes 23 and 26, chromosome-wide QTL for CDUS, on chromosomes 16 and 26, co-localized QTL for digestive efficiency and the ratio of intestine length to body weight and on chromosome 27 a chromosome-wide QTL for CDUDM were identified. CONCLUSIONS: This study identified several regions of the chicken genome involved in the control of digestive efficiency. Further studies are necessary to identify the underlying genes and to validate these in commercial populations and breeding environments.


Assuntos
Ração Animal , Galinhas/genética , Locos de Características Quantitativas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Galinhas/anatomia & histologia , Galinhas/fisiologia , Feminino , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/fisiologia , Genoma , Masculino , Triticum/metabolismo
10.
PLoS One ; 9(2): e84756, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586233

RESUMO

Species diversity in large herbivore communities is often explained by niche segregation allowed by differences in body mass and digestive morphophysiological features. Based on large number of gut samples in fall and winter, we analysed the temporal dynamics of diet composition, quality and interspecific overlap of 4 coexisting mountain herbivores. We tested whether the relative consumption of grass and browse differed among species of different rumen types (moose-type and intermediate-type), whether diet was of lower quality for the largest species, whether we could identify plant species which determined diet quality, and whether these plants, which could be "key-food-resources" were similar for all herbivores. Our analyses revealed that (1) body mass and rumen types were overall poor predictors of diet composition and quality, although the roe deer, a species with a moose-type rumen was confirmed as an "obligatory non grazer", while red deer, the largest species, had the most lignified diet; (2) diet overlap among herbivores was well predicted by rumen type (high among species of intermediate types only), when measured over broad plant groups, (3) the relationship between diet composition and quality differed among herbivore species, and the actual plant species used during winter which determined the diet quality, was herbivore species-specific. Even if diets overlapped to a great extent, the species-specific relationships between diet composition and quality suggest that herbivores may select different plant species within similar plant group types, or different plant parts and that this, along with other behavioural mechanisms of ecological niche segregation, may contribute to the coexistence of large herbivores of relatively similar body mass, as observed in mountain ecosystems.


Assuntos
Cervos/fisiologia , Herbivoria/fisiologia , Animais , Índice de Massa Corporal , Dieta/métodos , Ecossistema , Comportamento Alimentar/fisiologia , Poaceae , Características de Residência , Estações do Ano , Especificidade da Espécie
11.
BMC Genet ; 12: 71, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21846409

RESUMO

BACKGROUND: Poultry production has been widely criticized for its negative environmental impact related to the quantity of manure produced and to its nitrogen and phosphorus content. In this study, we investigated which traits related to excretion could be used to select chickens for lower environmental pollution.The genetic parameters of several excretion traits were estimated on 630 chickens originating from 2 chicken lines divergently selected on apparent metabolisable energy corrected for zero nitrogen (AMEn) at constant body weight. The quantity of excreta relative to feed consumption (CDUDM), the nitrogen and phosphorus excreted, the nitrogen to phosphorus ratio and the water content of excreta were measured, and the consequences of such selection on performance and gastro-intestinal tract (GIT) characteristics estimated. The genetic correlations between excretion, GIT and performance traits were established. RESULTS: Heritability estimates were high for CDUDM and the nitrogen excretion rate (0.30 and 0.29, respectively). The other excretion measurements showed low to moderate heritability estimates, ranging from 0.10 for excreta water content to 0.22 for the phosphorus excretion rate. Except for the excreta water content, the CDUDM was highly correlated with the excretion traits, ranging from -0.64 to -1.00. The genetic correlations between AMEn or CDUDM and the GIT characteristics were very similar and showed that a decrease in chicken excretion involves an increase in weight of the upper part of the GIT, and a decrease in the weight of the small intestine. CONCLUSION: In order to limit the environmental impact of chicken production, AMEn and CDUDM seem to be more suitable criteria to include in selection schemes than feed efficiency traits.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Defecação/genética , Digestão , Trato Gastrointestinal/anatomia & histologia , Aves Domésticas/genética , Seleção Genética , Animais , Digestão/genética , Poluição Ambiental , Feminino , Masculino , Esterco , Nitrogênio , Fósforo
12.
BMC Genet ; 12: 59, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21733156

RESUMO

BACKGROUND: Feed costs represent about 70% of the costs of raising broilers. The main way to decrease these costs is to improve feed efficiency by modification of diet formulation, but one other possibility would be to use genetic selection. Understanding the genetic architecture of the gastro-intestinal tract (GIT) and the impact of the selection criterion on the GIT would be of particular interest. We therefore studied the genetic parameters of AMEn (Apparent metabolisable energy corrected for zero nitrogen balance), feed efficiency, and GIT traits in chickens.Genetic parameters were estimated for 630 broiler chickens of the eighth generation of a divergent selection experiment on AMEn. Birds were reared until 23 d of age and fed a wheat-based diet. The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum, jejunum and ileum. RESULTS: The heritability estimates of BW, FCR and AMEn were moderate. The heritability estimates were higher for the GIT characteristics except for the weights of the proventriculus and liver. Gizzard weight was negatively correlated with density (weight to length ratio) of duodenum, jejunum and ileum. Proventriculus and gizzard weights were more strongly correlated with AMEn than with FCR, which was not the case for intestine weight and density. CONCLUSIONS: GIT traits were largely dependent on genetics and that selecting on AMEn or FCR would modify them. Phenotypic observations carried out in the divergent lines selected on AMEn were consistent with estimated genetic correlations between AMEn and GIT traits.


Assuntos
Galinhas/genética , Digestão , Ingestão de Alimentos/fisiologia , Trato Gastrointestinal/anatomia & histologia , Proventrículo/anatomia & histologia , Ração Animal , Animais , Peso Corporal , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Feminino , Trato Gastrointestinal/crescimento & desenvolvimento , Moela das Aves/anatomia & histologia , Moela das Aves/crescimento & desenvolvimento , Padrões de Herança , Fígado/anatomia & histologia , Fígado/crescimento & desenvolvimento , Masculino , Tamanho do Órgão , Fenótipo , Proventrículo/crescimento & desenvolvimento , Seleção Genética
13.
Rev. cient. (Maracaibo) ; 20(1): 42-52, feb. 2010. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-631042

RESUMO

Se evaluaron los efectos de la restricción de alimento (R) y la no restricción (NR) en pollos de engorde comerciales Ross, en un galpón ubicado en Cagua, Venezuela. A los 28d de edad de los pollos, se introdujeron cercos, seleccionándose al azar 264 pollos mitad machos (M), mitad hembras (H), sometiéndose a dos experimentos (EXP): Experimento 1 (EXP1): 120 pollos; Experimento 2 (EXP2): 144 pollos. La R duró 7h (9:00 a 16:00h). Se midió temperatura ambiente (TA), temperatura corporal (TC), nivel de hiperventilación (NH), consumo de alimento (CA), ganancia de peso (GP), índice de conversión (IC) y mortalidad. En el EXP1, TC y NH se midieron en días alternos desde 30 a 40d de edad de los pollos, en EXP2, en paralelo entre los 29 y 38d. La TA promedio dentro del galpón fue 29,4°C (EXP1) y 30,9°C (EXP2), 1,4 a 2°C mayor que fuera de él. El CA fue mayor en M sometidos a NR en ambos EXP, con menores diferencias entre sexos para pollos bajo R en EXP1, no siendo significativas en EXP2. En el EXP2 no hubo efectos sobre GP ni IC. La mortalidad en EXP2 fue 24,3% (35/122) el d 35 (presunto golpe de calor), 75% mayor en pollos con NR versus R, y un 50% más para los M respecto a H con R. En el EXP2, los M tuvieron una TC mayor (0,22°C) a H, siendo las diferencias más importantes entre pollos NR comparados con los R. En general, la R redujo el NH en 19,8 insp/min en el EXP1 y 12,3 insp/min en el EXP2, sin influencia del sexo en el EXP2, aunque fue más importante en H (29,1 insp/min) que en M (10,6 ins/min) en el EXP1. La reducción del riesgo de mortalidad por calor con la R fue mayor en H.


The effects of both food restriction (FR) and non food restriction (NFR) in Ross broilers under commercial conditions in Cagua, Venezuela, were evaluated. At 28d of age broilers, circular fences were placed in the shed and a total of 264 broilers, half males (M), half females (F) was randomly selected and allocated into two groups that underwent two experiments (EXP): Experiment 1 (EXP1): 120 broilers; Experiment 2 (EXP2): 144 broilers. The FR lasted 7h (9:00 to 16:00h) in both EXP. The following were measured: environmental temperature (ET); body temperature (BT), hyperventilation level (HL), food consumption (FC), weight gain (WG), food conversion index (FCI), and mortality. In EXP1, BT and HL were measured in an alternate way from 30 to 40d of age. In EXP2, they were measured in parallel between 29 and 38d of age. The average ET within the shed was 29.4°C (EXP1) y 30.9°C (EXP2), 1.4°C to 2°C higher than outside it. The FC was superior in M in both EXP, but the differences were lower among sexes in broilers under FR (EXP1), although non significant. No effect on WG and FCI was found in EXP2. In EXP2, the mortality reached 24.3% (35/144) at d 35 (alleged heat stress), with 75% more in FR than in NFR broilers; with a 50% more in M compared to F with FR. In EXP2, M had a higher (0.22°C) BT than F, being the most important differences in broilers with NFR food. In general, FR reduced HL in 19.8 insp/min in EXP1 and 12.3 insp/min in EXP2, respectively. The sex did not have any effect on HL in EXP2, although it was more important for F (29.1 insp/min) than for M (10.6 insp/min) in EXP1. The reduction in the risk of mortality due to heat stress was greater in F.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...