Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358795

RESUMO

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.


Assuntos
Acetilesterase , Membranas Mitocondriais , Chlamydia trachomatis , Proteínas de Bactérias/genética , Ubiquitina
2.
Curr Opin Microbiol ; 74: 102330, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247566

RESUMO

Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Biologia Molecular , Interações Hospedeiro-Patógeno/genética
3.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36909574

RESUMO

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.

4.
Cell Host Microbe ; 30(12): 1671-1684.e9, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36084633

RESUMO

Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and a major threat to women's reproductive health in particular. This obligate intracellular pathogen resides and replicates within a cellular compartment termed an inclusion, where it is sheltered by unknown mechanisms from gamma-interferon (IFNγ)-induced cell-autonomous host immunity. Through a genetic screen, we uncovered the Chlamydia inclusion membrane protein gamma resistance determinant (GarD) as a bacterial factor protecting inclusions from cell-autonomous immunity. In IFNγ-primed human cells, inclusions formed by garD loss-of-function mutants become decorated with linear ubiquitin and are eliminated. Leveraging cellular genome-wide association data, we identified the ubiquitin E3 ligase RNF213 as a candidate anti-Chlamydia protein. We demonstrate that IFNγ-inducible RNF213 facilitates the ubiquitylation and destruction of GarD-deficient inclusions. Furthermore, we show that GarD operates as a cis-acting stealth factor barring RNF213 from targeting inclusions, thus functionally defining GarD as an RNF213 antagonist essential for chlamydial growth during IFNγ-stimulated immunity.


Assuntos
Infecções Bacterianas , Infecções por Chlamydia , Feminino , Humanos , Chlamydia trachomatis/genética , Estudo de Associação Genômica Ampla , Infecções por Chlamydia/metabolismo , Ubiquitinação , Interferon gama/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Células HeLa , Adenosina Trifosfatases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Methods Mol Biol ; 2042: 185-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31385277

RESUMO

Chlamydia is a major etiological agent of human disease that affects millions of individuals worldwide. Historically, our understanding of the mechanisms that contribute to its pathogenesis has been limited. However, the recent development of powerful genetic tools for manipulating Chlamydia has resulted in significant gains in our ability to dissect its virulence mechanisms. These tools have overcome several barriers for manipulating intracellular pathogens and are amenable for the routine genetic engineering of Chlamydia. Here, we provide several detailed protocols for performing genetic analysis in Chlamydia trachomatis allowing investigators to elucidate how this obligate intracellular pathogen causes disease.


Assuntos
Chlamydia trachomatis/genética , DNA Bacteriano/genética , Genética Reversa/métodos , Animais , Infecções por Chlamydia/microbiologia , Chlorocebus aethiops , Ligação Genética , Humanos , Mutagênese , Polimorfismo de Nucleotídeo Único , Células Vero
6.
Front Microbiol ; 10: 756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024512

RESUMO

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in humans and a frequent cause of asymptomatic, persistent infections leading to serious complications, particularly in young women. Chlamydia displays a unique obligate intracellular lifestyle involving the infectious elementary body and the replicative reticulate body. In the presence of stressors such as gamma-interferon (IFNγ) or beta-lactam antibiotics, C. trachomatis undergoes an interruption in its replication cycle and enters a viable but non-cultivable state. Upon removal of the stressors, surviving C. trachomatis resume cell division and developmental transitions. In this report, we describe a genetic screen to identify C. trachomatis mutants with defects in recovery from IFNγ- and/or penicillin-induced stress and characterized a chemically derived C. trachomatis mutant strain that exhibited a significant decrease in recovery from IFNγ- but not penicillin-induced stress. Through lateral gene transfer and targeted insertional gene inactivation we identified ptr, encoding a predicted protease, as a gene required for recovery from IFNγ-induced stress. A C. trachomatis LGV-L2 ptr-null strain displayed reduced generation of infectious progeny and impaired genome replication upon removal of IFNγ. This defect was restored by introducing a wild type copy of ptr on a plasmid, indicating that Ptr is required for a rapid growth upon removal of IFNγ. Ptr was expressed throughout the developmental cycle and localized to the inclusion lumen. Overall, our findings indicate that the putative secreted protease Ptr is required for C. trachomatis to specifically recover from IFNγ- but not penicillin-induced stress.

7.
Nat Microbiol ; 3(12): 1377-1384, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397340

RESUMO

Pathogenic bacteria are armed with potent effector proteins that subvert host signalling processes during infection1. The activities of bacterial effectors and their associated roles within the host cell are often poorly understood, particularly for Chlamydia trachomatis2, a World Health Organization designated neglected disease pathogen. We identify and explain remarkable dual Lys63-deubiquitinase (DUB) and Lys-acetyltransferase activities in the Chlamydia effector ChlaDUB1. Crystal structures capturing intermediate stages of each reaction reveal how the same catalytic centre of ChlaDUB1 can facilitate such distinct processes, and enable the generation of mutations that uncouple the two activities. Targeted Chlamydia mutant strains allow us to link the DUB activity of ChlaDUB1 and the related, dedicated DUB ChlaDUB2 to fragmentation of the host Golgi apparatus, a key process in Chlamydia infection for which effectors have remained elusive. Our work illustrates the incredible versatility of bacterial effector proteins, and provides important insights towards understanding Chlamydia pathogenesis.


Assuntos
Acetiltransferases/genética , Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Enzimas Desubiquitinantes/química , Complexo de Golgi/metabolismo , Processamento de Proteína Pós-Traducional , Células A549 , Acetilação , Acetiltransferases/química , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Chlorocebus aethiops , Enzimas Desubiquitinantes/genética , Regulação Bacteriana da Expressão Gênica , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Células Vero
8.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30297356

RESUMO

Chlamydia has emerged as an important model system for the study of host pathogen interactions, in part due to a resurgence in the development of tools for its molecular genetic manipulation. An additional tool, published by Keb et al. (G. Keb, R. Hayman, and K. A. Fields, J. Bacteriol. 200:e00479-18, 2018, https://doi.org/10.1128/JB.00479-18), now allows for custom genetic engineering of genomic regions that were traditionally recalcitrant to genetic manipulation, such as genes within operons. This new method will be an essential instrument for the elucidation of Chlamydia-host interactions.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Alelos , Deleção de Genes , Interações Hospedeiro-Patógeno , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-28784680

RESUMO

The type II fatty acid synthesis (FASII) pathway is essential for bacterial lipid biosynthesis and continues to be a promising target for novel antibacterial compounds. Recently, it has been demonstrated that Chlamydia is capable of FASII and this pathway is indispensable for Chlamydia growth. Previously, a high-content screen with Chlamydia trachomatis-infected cells was performed, and acylated sulfonamides were identified to be potent growth inhibitors of the bacteria. C. trachomatis strains resistant to acylated sulfonamides were isolated by serial passage of a wild-type strain in the presence of low compound concentrations. Results from whole-genome sequencing of 10 isolates from two independent drug-resistant populations revealed that mutations that accumulated in fabF were predominant. Studies of the interaction between the FabF protein and small molecules showed that acylated sulfonamides directly bind to recombinant FabF in vitro and treatment of C. trachomatis-infected HeLa cells with the compounds leads to a decrease in the synthesis of Chlamydia fatty acids. This work demonstrates the importance of FASII for Chlamydia development and may lead to the development of new antimicrobials.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Ácido Graxo Sintase Tipo II/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Sulfametoxazol/farmacologia , Acilação/efeitos dos fármacos , Adamantano/farmacologia , Aminobenzoatos/farmacologia , Anilidas/farmacologia , Animais , Linhagem Celular Tumoral , Cerulenina/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Chlorocebus aethiops , Ácido Graxo Sintase Tipo II/genética , Células HeLa , Humanos , Triclosan/farmacologia , Células Vero
10.
Cell Host Microbe ; 21(1): 113-121, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28041929

RESUMO

Evading cell death is critical for Chlamydia to maintain a replicative niche, but the underlying mechanisms are unknown. We screened a library of Chlamydia mutants for modulators of cell death. Inactivation of the inclusion membrane protein CpoS (Chlamydia promoter of survival) induced rapid apoptotic and necrotic death in infected cells. The protection afforded by CpoS is limited to the inclusion in which it resides, indicating that it counteracts a spatially restricted pro-death signal. CpoS-deficient Chlamydia induced an exacerbated type I interferon response that required the host cGAS/STING/TBK1/IRF3 signaling pathway. Disruption of STING, but not cGAS or IRF3, attenuated cell death, suggesting that STING mediates Chlamydia-induced cell death independent of its role in regulating interferon responses. CpoS-deficient strains are attenuated in their ability to propagate in cell culture and are cleared faster from the murine genital tract, highlighting the importance of CpoS for Chlamydia pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Morte Celular/imunologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Interferon Tipo I/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Chlorocebus aethiops , Feminino , Células HeLa , Humanos , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Células Vero
11.
Microbiol Mol Biol Rev ; 80(2): 411-27, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27030552

RESUMO

Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/genética , Animais , Chlamydia/fisiologia , DNA Bacteriano , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal , Genes Bacterianos , Engenharia Genética , Interações Hospedeiro-Patógeno , Humanos
12.
BMC Microbiol ; 15: 194, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424482

RESUMO

BACKGROUND: Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism's intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. METHODS: SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. RESULTS: The strain harboring the SNV with the most marked impact on proteolysis (cthtrA P370L) was detected to have a significant reduction in the production of infectious elementary bodies. CONCLUSIONS: This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.


Assuntos
Substituição de Aminoácidos , Chlamydia trachomatis/metabolismo , Corpos de Inclusão/microbiologia , Proteínas Mutantes/metabolismo , Serina Proteases/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Chlamydia trachomatis/genética , Análise Mutacional de DNA , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/genética , Proteólise , Serina Proteases/genética , Fatores de Virulência/genética
13.
Cell Host Microbe ; 17(5): 716-25, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25920978

RESUMO

Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.


Assuntos
Chlamydia trachomatis/genética , Genética Microbiana/métodos , Genoma Bacteriano , Biologia Molecular/métodos , Mutagênese , Mutação , Genética Reversa/métodos , Marcadores Genéticos , Testes Genéticos , Análise de Sequência de DNA
14.
Infect Immun ; 83(2): 661-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422265

RESUMO

The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Macrófagos/microbiologia , Transporte Proteico/genética , Vacúolos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/fisiologia , Linhagem Celular Tumoral , Membrana Celular , Coxiella burnetii/genética , Citosol/metabolismo , Deleção de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Febre Q/microbiologia , Febre Q/patologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vacúolos/genética , Vacúolos/microbiologia
15.
Nature ; 513(7519): 555-8, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25079329

RESUMO

Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the fkbA gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the fkbA mature mRNA as a template to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.


Assuntos
Farmacorresistência Fúngica/genética , Epigênese Genética/genética , Mucor/efeitos dos fármacos , Mucor/genética , Mutação/genética , Interferência de RNA , Tacrolimo/farmacologia , Calcineurina/genética , Calcineurina/metabolismo , Inibidores de Calcineurina , Humanos , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/crescimento & desenvolvimento , Dados de Sequência Molecular , Mucor/crescimento & desenvolvimento , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Fenótipo , Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/deficiência , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo
16.
Pathog Dis ; 71(3): 336-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24838663

RESUMO

The secreted Chlamydia protease CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cell rather than artifacts of postlysis degradation. Here, we clarify the role played by CPAF in cellular models of infection by analyzing Chlamydia trachomatis mutants deficient for CPAF activity. Using reverse genetic approaches, we identified two C. trachomatis strains possessing nonsense, loss-of-function mutations in cpa (CT858) and a third strain containing a mutation in type II secretion (T2S) machinery that inhibited CPAF activity by blocking zymogen secretion and subsequent proteolytic maturation into the active hydrolase. HeLa cells infected with T2S(-) or CPAF(-) C. trachomatis mutants lacked detectable in vitro CPAF proteolytic activity and were not defective for cellular traits that have been previously attributed to CPAF activity, including resistance to staurosporine-induced apoptosis, Golgi fragmentation, altered NFκB-dependent gene expression, and resistance to reinfection. However, CPAF-deficient mutants did display impaired generation of infectious elementary bodies (EBs), indicating an important role for this protease in the full replicative potential of C. trachomatis. In addition, we provide compelling evidence in live cells that CPAF-mediated protein processing of at least two host protein targets, vimentin filaments and the nuclear envelope protein lamin-associated protein-1 (LAP1), occurs rapidly after the loss of the inclusion membrane integrity, but before loss of plasma membrane permeability and cell lysis. CPAF-dependent processing of host proteins correlates with a loss of inclusion membrane integrity, and so we propose that CPAF plays a role late in infection, possibly during the stages leading to the dismantling of the infected cell prior to the release of EBs during cell lysis.


Assuntos
Chlamydia trachomatis/enzimologia , Interações Hospedeiro-Patógeno , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Chlorocebus aethiops , Células Epiteliais/microbiologia , Células HeLa , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peptídeo Hidrolases/deficiência , Processamento de Proteína Pós-Traducional , Proteólise , Células Vero
17.
PLoS Pathog ; 10(2): e1003954, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586162

RESUMO

Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. Like many T3S effectors, TARP requires a chaperone (Slc1) for efficient translocation into host cells. In this study, we defined proteins that associate with Slc1 in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry. We identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form large molecular weight complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C. trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to EBs at entry sites where it remained associated with nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.


Assuntos
Chlamydia trachomatis/genética , Imunidade Inata/genética , Chaperonas Moleculares/genética , Proteínas Proto-Oncogênicas c-crk/metabolismo , Sequência de Aminoácidos , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/metabolismo , Cromatografia Líquida , Imunofluorescência , Células HeLa , Humanos , Imunidade Inata/imunologia , Imunoprecipitação , Chaperonas Moleculares/imunologia , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Espectrometria de Massas em Tandem
18.
mBio ; 6(1): e02304-14, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25550323

RESUMO

UNLABELLED: In a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection. IMPORTANCE: Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/metabolismo , Inibidores Enzimáticos/metabolismo , Glucose-6-Fosfato/metabolismo , Piridonas/metabolismo , Análise Mutacional de DNA , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Mutação
19.
J Bacteriol ; 195(18): 4221-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852872

RESUMO

Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.


Assuntos
Proteínas de Bactérias/genética , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/genética , Hidrazinas/farmacologia , Mutação , Protoporfirinogênio Oxidase/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/patogenicidade , Farmacorresistência Bacteriana , Células HeLa , Heme/metabolismo , Humanos , Ferro/metabolismo , Ferro/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Protoporfirinogênio Oxidase/química , Protoporfirinogênio Oxidase/metabolismo
20.
Cold Spring Harb Perspect Med ; 3(5): a010256, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637308

RESUMO

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host-cellular functions to invade host cells and maintain a replicative niche.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/patogenicidade , Animais , Apoptose/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/fisiopatologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Citocinas/fisiologia , Células Epiteliais/microbiologia , Complexo de Golgi/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imunidade Inata/fisiologia , Estágios do Ciclo de Vida , Proteínas de Membrana Transportadoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...