Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 56(17): 2516-2535.e8, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34469751

RESUMO

The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.


Assuntos
Diferenciação Celular/genética , Crista Neural/citologia , Neuroglia/metabolismo , Células de Schwann/metabolismo , Análise de Sequência de RNA , Animais , Sequência de Bases/genética , Diferenciação Celular/fisiologia , Camundongos Transgênicos , Neurônios/metabolismo , Análise de Sequência de RNA/métodos
2.
Nat Neurosci ; 19(8): 1085-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27322420

RESUMO

Tau protein can transfer between neurons transneuronally and trans-synaptically, which is thought to explain the progressive spread of tauopathy observed in the brain of patients with Alzheimer's disease. Here we show that physiological tau released from donor cells can transfer to recipient cells via the medium, suggesting that at least one mechanism by which tau can transfer is via the extracellular space. Neuronal activity has been shown to regulate tau secretion, but its effect on tau pathology is unknown. Using optogenetic and chemogenetic approaches, we found that increased neuronal activity stimulates the release of tau in vitro and enhances tau pathology in vivo. These data have implications for disease pathogenesis and therapeutic strategies for Alzheimer's disease and other tauopathies.


Assuntos
Encéfalo/metabolismo , Sinapses/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Camundongos Transgênicos
3.
J Comp Neurol ; 522(8): 1839-57, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24222647

RESUMO

New stereological assessments of lateral geniculate nucleus (LGN) neuron numbers and volumes in five New World primates (Cebus apella, Saguinus midas niger, Alouatta caraya, Aotus azarae, and Callicebus moloch) and compiled LGN volumes for an additional 26 mammals were analyzed for a better understanding of visual system evolution. Both the magnocellular (M)- and the parvocellular (P)-cell populations scale allometrically with brain volume in primates, P cells with a significantly higher slope such that, for every increase in M neuron number, P neuron numbers more than double (ln scale; y = 0.89x + 2.42R(2) = 0.664). In diurnal primates, the ratio of P to M cells was slightly but significantly higher than in nocturnal primates. For all mammals, including primates, LGN volume was unrelated to nocturnal or diurnal niche but showed marked differences in slope and intercept depending on taxonomic group. The allometric scaling of M and P cells can be related to the order of neurogenesis, with late-generated P cells increasing with positive allometry compared with the earlier-generated M cells. This developmental regularity links relative foveal representation to relative isocortex enlargement, which is also generated late. The small increase in the P/M cell ratio in diurnal primates may result from increased developmental neuron loss in the M-cell population as it competes for limited termination zones in primary visual cortex.


Assuntos
Tamanho do Núcleo Celular/fisiologia , Núcleo de Edinger-Westphal/crescimento & desenvolvimento , Corpos Geniculados/crescimento & desenvolvimento , Ínsulas Olfatórias/crescimento & desenvolvimento , Alouatta , Animais , Aotidae , Gatos , Cebus , Contagem de Células/métodos , Cães , Núcleo de Edinger-Westphal/citologia , Corpos Geniculados/citologia , Ínsulas Olfatórias/citologia , Camundongos , Neurônios/fisiologia , Filogenia , Pitheciidae , Ratos , Saguinus , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...