Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Med Sci (Paris) ; 40(4): 361-368, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38651961

RESUMO

Cachexia is a systemic wasting condition associated to advanced phases of many cancers, which contributes to significant morbidity and mortality. It is mainly characterized by involuntary weight loss due to muscle wasting often associated with loss of adipose tissue, possibly leading to inanition and death, without treatment to date. Symptomatology covers a complex array of disorders (fatigue, inflammation, pain, anorexia, depression) related to multisystemic impairments progressively affecting numerous organs and tissues (muscle, adipose tissue, brain, immune system, gastrointestinal tract). The mechanisms of induction and progression of the disease, still poorly understood, involve inflammatory, metabolic, and neuroendocrine drivers, triggered by a variety of mediators originating from tumor, tumor-host interactions, and inter-organ crosstalk.


Title: La cachexie associée au cancer - Une maladie non résolue. Abstract: La cachexie est un état caractéristique de nombreux cancers en phase avancée qui se traduit par un amaigrissement extrême lié à une dénutrition, pouvant évoluer vers une issue fatale, sans traitement à l'heure actuelle. Les symptômes de la cachexie incluent une fonte musculaire, souvent accompagnée de perte de la masse grasse, et un ensemble complexe de troubles (inflammation, douleurs, faiblesse générale, anorexie, dépression). L'étiologie de la maladie, encore mal comprise, met en jeu des composantes inflammatoires, métaboliques et neuroendocrines affectant de nombreux organes, qui sont induites par un grand nombre de médiateurs.


Assuntos
Caquexia , Neoplasias , Caquexia/etiologia , Humanos , Neoplasias/complicações , Inflamação/complicações , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia
2.
Nature ; 625(7996): 728-734, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200314

RESUMO

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Assuntos
Florestas , Árvores , Clima Tropical , Biodiversidade , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , África , Sudeste Asiático
3.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
4.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872262

RESUMO

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Assuntos
Ecossistema , Árvores , Humanos , Árvores/metabolismo , Florestas , Folhas de Planta/metabolismo , Hábitos , Carbono/metabolismo
6.
Nature ; 621(7980): 773-781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612513

RESUMO

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologia
7.
J Transl Med ; 21(1): 522, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37533102

RESUMO

BACKGROUND: Colorectal cancer (CRC) can be classified into four molecular subtypes (CMS) among which CMS1 is associated with the best prognosis, while CMS4, the mesenchymal subtype, has the worst outcome. Although mitochondria are considered to be hubs of numerous signaling pathways, the study of mitochondrial metabolism has been neglected for many years. Mitochondrial Complex I (CI) plays a dual role, both in energy and reactive oxygen species (ROS) production. However, the possible contribution of CI to tumorigenesis in cancer remains unclear. The purpose of this study was to investigate the CI under the prism of the CMS classification of CRC in ex vivo models. METHODS: Biochemical dosages, bioenergetics analysis and western-blot were used to characterize CI expression, function and redox balance in LoVo and MDST8 cell lines, belonging to CMS1 and CMS4 subgroups, respectively. Cell proliferation and migration were assessed by xCELLigence technology. Overproduction or scavenging of mitochondrial ROS (mtROS) were performed to analyze the effect of mtROS on proliferation, migration, and mesenchymal markers. Focal adhesion kinase (FAK) and its activation were analyzed by immunofluorescence. We assessed the distribution of two CI scores in CRC cohorts according to CMS classification and their relevance for patient survival. RESULTS: We found that CI is downregulated in CMS4 cells and is associated with elevated mtROS. We establish for the first time that in these migrating cells, mtROS production is maintained at optimal levels not only through changes in CI activity but also by inactivation/acetylation of superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme. We show that promoting or scavenging mtROS both mitigate CMS4 cells' migration. Our results also point to a mtROS-mediated focal adhesion kinase (FAK) activation, which likely sustains their migratory phenotype. Using cohorts of CRC patients, we document that the expression of CI is downregulated in the CMS4 subgroup, and that low CI expression is associated with poor prognosis. Patients' datasets reveal an inverse correlation between CI and the epithelial-mesenchymal transition (EMT) pathway. CONCLUSION: We showed that inhibition of CI contributes to heighten mtROS, which likely foster MDST8 migration and might account for the specific EMT signature of CMS4 tumors. These data reveal a novel role of mitochondrial CI in CRC, with biological consequences that may be targeted with anti- or pro-oxidant drugs in clinical practice.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Transdução de Sinais , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo
8.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941205

RESUMO

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Assuntos
Biodiversidade , Florestas , Solo , Árvores
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101981

RESUMO

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores/classificação , Planeta Terra , Árvores/crescimento & desenvolvimento
11.
J Pers Med ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199819

RESUMO

Patients with autism spectrum disorder (ASD) may have an increase in blood acyl-carnitine (AC) concentrations indicating a mitochondrial fatty acid ß-oxidation (mtFAO) impairment. However, there are no data on systematic mtFAO analyses in ASD. We analyzed tritiated palmitate oxidation rates in fibroblasts from patients with ASD before and after resveratrol (RSV) treatment, according to methods used for the diagnosis of congenital defects in mtFAO. ASD participants (N = 10, 60%; male; mean age (SD) 7.4 (3.2) years) were divided in two age-equivalent groups based on the presence (N = 5) or absence (N = 5) of elevated blood AC levels. In addition, electron transport chain (ETC) activity in fibroblasts and muscle biopsies and clinical characteristics were compared between the ASD groups. Baseline fibroblast mtFAO was not significantly different in patients in comparison with control values. However, ASD patients with elevated AC exhibited significantly decreased mtFAO rates, muscle ETC complex II activity, and fibroblast ETC Complex II/III activity (p < 0.05), compared with patients without an AC signature. RSV significantly increased the mtFAO activity in all study groups (p = 0.001). The highest mtFAO changes in response to RSV were observed in fibroblasts from patients with more severe symptoms on the Social Responsiveness Scale total (p = 0.001) and Awareness, Cognition, Communication and Motivation subscales (all p < 0.01). These findings suggested recognition of an ASD patient subset characterized by an impaired mtFAO flux associated with abnormal blood AC. The study elucidated that RSV significantly increased fibroblast mtFAO irrespective of plasma AC status, and the highest changes to RSV effects on mtFAO were observed in the more severely affected patients.

12.
Nature ; 593(7857): 90-94, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33883743

RESUMO

Africa is forecasted to experience large and rapid climate change1 and population growth2 during the twenty-first century, which threatens the world's second largest rainforest. Protecting and sustainably managing these African forests requires an increased understanding of their compositional heterogeneity, the environmental drivers of forest composition and their vulnerability to ongoing changes. Here, using a very large dataset of 6 million trees in more than 180,000 field plots, we jointly model the distribution in abundance of the most dominant tree taxa in central Africa, and produce continuous maps of the floristic and functional composition of central African forests. Our results show that the uncertainty in taxon-specific distributions averages out at the community level, and reveal highly deterministic assemblages. We uncover contrasting floristic and functional compositions across climates, soil types and anthropogenic gradients, with functional convergence among types of forest that are floristically dissimilar. Combining these spatial predictions with scenarios of climatic and anthropogenic global change suggests a high vulnerability of the northern and southern forest margins, the Atlantic forests and most forests in the Democratic Republic of the Congo, where both climate and anthropogenic threats are expected to increase sharply by 2085. These results constitute key quantitative benchmarks for scientists and policymakers to shape transnational conservation and management strategies that aim to provide a sustainable future for central African forests.


Assuntos
Aquecimento Global/estatística & dados numéricos , Floresta Úmida , Árvores/classificação , Aclimatação , África Central , Conjuntos de Dados como Assunto , Flores , Atividades Humanas , Humanos , Crescimento Demográfico , Estações do Ano , Desenvolvimento Sustentável , Temperatura , Árvores/crescimento & desenvolvimento
13.
Cell Mol Life Sci ; 78(5): 2157-2167, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32875355

RESUMO

Inherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression. We document unprecedented alterations in the cellular prion protein PrPC, which directly arise from the failure in CPT2 enzymatic activity. We also demonstrate that the loss of PrPC function in normal myotubes recapitulates the defects in focal adhesion, redox balance and differentiation hallmarks monitored in CPT2-deficient cells. These results are further corroborated by studies performed in muscles from Prnp-/- mice. Altogether, our results unveil a molecular scenario, whereby PrPC dysfunction governed by faulty CPT2 activity may drive aberrant focal adhesion turnover and hinder proper myotube differentiation. Our study adds a novel facet to the involvement of PrPC in diverse physiopathological situations.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Adesões Focais/genética , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/genética , Proteínas Priônicas/genética , Animais , Carnitina O-Palmitoiltransferase/deficiência , Células Cultivadas , Adesões Focais/metabolismo , Humanos , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Doenças Musculares/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Oxirredução , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Proteínas Priônicas/deficiência , Interferência de RNA , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
14.
J Clin Invest ; 130(11): 5858-5874, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32759503

RESUMO

Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis, but its contribution to macrophage functions and host defense remains to be delineated. Here, we showed that lipopolysaccharide (LPS) in combination with IFN-γ inhibited PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11. In addition, we demonstrated that the inhibition of mitophagy triggered classical macrophage activation in a mitochondrial ROS-dependent manner. In a murine model of polymicrobial infection (cecal ligature and puncture), adoptive transfer of Pink1-deficient bone marrow or pharmacological inhibition of mitophagy promoted macrophage activation, which favored bactericidal clearance and led to a better survival rate. Reciprocally, mitochondrial uncouplers that promote mitophagy reversed LPS/IFN-γ-mediated activation of macrophages and led to immunoparalysis with impaired bacterial clearance and lowered survival. In critically ill patients, we showed that mitophagy was inhibited in blood monocytes of patients with sepsis as compared with nonseptic patients. Overall, this work demonstrates that the inhibition of mitophagy is a physiological mechanism that contributes to the activation of myeloid cells and improves the outcome of sepsis.


Assuntos
Bactérias/imunologia , Ativação de Macrófagos , Macrófagos Peritoneais/imunologia , Mitofagia/imunologia , Sepse/imunologia , Animais , Feminino , Humanos , Interferon gama/imunologia , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Proteínas Quinases/imunologia , Células RAW 264.7 , Sepse/microbiologia , Sepse/patologia
15.
Biol Rev Camb Philos Soc ; 95(6): 1706-1719, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32648358

RESUMO

Ecosystem monitoring is fundamental to our understanding of how ecosystem change is impacting our natural resources and is vital for developing evidence-based policy and management. However, the different types of ecosystem monitoring, along with their recommended applications, are often poorly understood and contentious. Varying definitions and strict adherence to a specific monitoring type can inhibit effective ecosystem monitoring, leading to poor program development, implementation and outcomes. In an effort to develop a more consistent and clear understanding of ecosystem monitoring programs, we here review the main types of monitoring and recommend the widespread adoption of three classifications of monitoring, namely, targeted, surveillance and landscape monitoring. Landscape monitoring is conducted over large areas, provides spatial data, and enables questions relating to where and when ecosystem change is occurring to be addressed. Surveillance monitoring uses standardised field methods to inform on what is changing in our environments and the direction and magnitude of that change, whilst targeted monitoring is designed around testable hypotheses over defined areas and is the best approach for determining the causes of ecosystem change. The classification system is flexible and can incorporate different interests, objectives, targets and characteristics as well as different spatial scales and temporal frequencies, while also providing valuable structure and consistency across distinct ecosystem monitoring programs. To support our argument, we examine the ability of each monitoring type to inform on six key types of questions that are routinely posed for ecosystem monitoring programs, such as where and when change is occurring, what is the magnitude of change, and how can the change be managed? As we demonstrate, each type of ecosystem monitoring has its own strengths and weaknesses, which should be carefully considered relative to the desired results. Using this scheme, scientists and land managers can design programs best suited to their needs. Finally, we assert that for our most serious environmental challenges, it is essential that we include information from each of these monitoring scales to inform on all facets of ecosystem change, and this is best achieved through close collaboration between the scales. With a renewed understanding of the importance of each monitoring type, along with greater commitment to monitor cooperatively, we will be well placed to address some of our greatest environmental challenges.


Assuntos
Ecossistema , Monitoramento Ambiental , Conservação dos Recursos Naturais
16.
Sci Data ; 7(1): 221, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641808

RESUMO

Forest biomass is key in Earth carbon cycle and climate system, and thus under intense scrutiny in the context of international climate change mitigation initiatives (e.g. REDD+). In tropical forests, the spatial distribution of aboveground biomass (AGB) remains, however, highly uncertain. There is increasing recognition that progress is strongly limited by the lack of field observations over large and remote areas. Here, we introduce the Congo basin Forests AGB (CoFor-AGB) dataset that contains AGB estimations and associated uncertainty for 59,857 1-km pixels aggregated from nearly 100,000 ha of in situ forest management inventories for the 2000 - early 2010s period in five central African countries. A comprehensive error propagation scheme suggests that the uncertainty on AGB estimations derived from c. 0.5-ha inventory plots (8.6-15.0%) is only moderately higher than the error obtained from scientific sampling plots (8.3%). CoFor-AGB provides the first large scale view of forest AGB spatial variation from field data in central Africa, the second largest continuous tropical forest domain of the world.


Assuntos
Biomassa , Florestas , Clima Tropical , África Central , Mudança Climática , Conservação dos Recursos Naturais , Monitoramento Ambiental , Árvores
17.
Science ; 368(6493): 869-874, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32439789

RESUMO

The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.


Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Temperatura Alta , Árvores/metabolismo , Clima Tropical , Aclimatação , Biomassa , Carbono/metabolismo , Planeta Terra , Madeira
18.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32393624

RESUMO

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Assuntos
Mudança Climática , Temperatura Baixa , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Ásia , Europa (Continente) , Florestas , América do Norte , Fenótipo , Análise Espaço-Temporal , Temperatura
19.
Glob Chang Biol ; 26(7): 4042-4055, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347650

RESUMO

Climate warming is currently advancing spring leaf-out of temperate and boreal trees, enhancing net primary productivity (NPP) of forests. However, it remains unclear whether this trend will continue, preventing for accurate projections of ecosystem functioning and climate feedbacks. Several ecophysiological mechanisms have been proposed to regulate the timing of leaf emergence in response to changing environmental cues, but the relative importance of those mechanisms remains unclear. Here, we use 727,401 direct phenological observations of common European forest trees to examine the dominant controls on leaf-out. Using the emerging mechanisms, we forecast future trajectories of spring arrival and evaluate the consequences for forest carbon dynamics. By representing hypothesized relationships with autumn temperature, winter chilling, and the timing of spring onset, we accurately predicted reductions in the advance of leaf-out. There was a strong consensus between our empirical model and existing process-based models, revealing that the advance in leaf-out will not exceed 2 weeks over the rest of the century. We further estimate that, under a 'business-as-usual' climate scenario, earlier spring arrival will enhance NPP of temperate and boreal forests by ~0.2 Gt per year at the end of the century. In contrast, previous estimates based on a simple degree-day model range around 0.8 Gt. As such, the expected NPP is drastically reduced in our updated model relative to previous estimates-by a total of ~25 Gt over the rest of the century. These findings reveal important environmental constraints on the productivity of broad-leaved deciduous trees and highlight that shifting spring phenology is unlikely to slow the rate of warming by offsetting anthropogenic carbon emissions.


Assuntos
Ecossistema , Árvores , Clima , Mudança Climática , Florestas , Folhas de Planta , Estações do Ano , Temperatura
20.
Science ; 366(6469)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31780529

RESUMO

Our study quantified the global tree restoration potential and its associated carbon storage potential under existing climate conditions. Skidmore et al dispute our findings, using as reference a yearly estimation of carbon storage that could be reached by 2050. We provide a detailed answer highlighting misunderstandings in their interpretation, notably that we did not consider any time limit for the restoration process.


Assuntos
Mudança Climática , Árvores , Carbono , Clima , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...