Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 114: e190088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188952

RESUMO

BACKGROUND: Despite treatment with effective antimalarial drugs, the mortality rate is still high in severe cases of the disease, highlighting the need to find adjunct therapies that can inhibit the adhesion of Plasmodium falciparum-infected erythrocytes (Pf-iEs). OBJECTIVES: In this context, we evaluated a new heparan sulfate (HS) from Nodipecten nodosus for antimalarial activity and inhibition of P. falciparum cytoadhesion and rosetting. METHODS: Parasite inhibition was measured by SYBR green using a cytometer. HS was assessed in rosetting and cytoadhesion assays under static and flow conditions using Chinese hamster ovary (CHO) and human lymphatic endothelial cell (HLEC) cells expressing intercellular adhesion molecule-1 (ICAM1) and chondroitin sulfate A (CSA), respectively. FINDINGS: This HS inhibited merozoite invasion similar to heparin. Moreover, mollusk HS decreased cytoadherence of P. falciparum to CSA and ICAM-1 on the surface of endothelial cells under static and flow conditions. In addition, this glycan efficiently disrupted rosettes. CONCLUSIONS: These findings support a potential use for mollusk HS as adjunct therapy for severe malaria.


Assuntos
Heparitina Sulfato/farmacologia , Merozoítos/efeitos dos fármacos , Moluscos/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Proteínas de Protozoários/efeitos dos fármacos , Reprodutibilidade dos Testes , Fatores de Tempo
2.
Mem. Inst. Oswaldo Cruz ; 114: e190088, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1012679

RESUMO

BACKGROUND Despite treatment with effective antimalarial drugs, the mortality rate is still high in severe cases of the disease, highlighting the need to find adjunct therapies that can inhibit the adhesion of Plasmodium falciparum-infected erythrocytes (Pf-iEs). OBJECTIVES In this context, we evaluated a new heparan sulfate (HS) from Nodipecten nodosus for antimalarial activity and inhibition of P. falciparum cytoadhesion and rosetting. METHODS Parasite inhibition was measured by SYBR green using a cytometer. HS was assessed in rosetting and cytoadhesion assays under static and flow conditions using Chinese hamster ovary (CHO) and human lymphatic endothelial cell (HLEC) cells expressing intercellular adhesion molecule-1 (ICAM1) and chondroitin sulfate A (CSA), respectively. FINDINGS This HS inhibited merozoite invasion similar to heparin. Moreover, mollusk HS decreased cytoadherence of P. falciparum to CSA and ICAM-1 on the surface of endothelial cells under static and flow conditions. In addition, this glycan efficiently disrupted rosettes. CONCLUSIONS These findings support a potential use for mollusk HS as adjunct therapy for severe malaria.


Assuntos
Plasmodium falciparum , Malária Falciparum , Receptores de Citoadesina , Heparitina Sulfato , Moluscos
3.
FASEB J ; 32(8): 4470-4481, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29558201

RESUMO

Cerebral malaria (CM) is a multifactorial syndrome involving an exacerbated proinflammatory status, endothelial cell activation, coagulopathy, hypoxia, and accumulation of leukocytes and parasites in the brain microvasculature. Despite significant improvements in malaria control, 15% of mortality is still observed in CM cases, and 25% of survivors develop neurologic sequelae for life-even after appropriate antimalarial therapy. A treatment that ameliorates CM clinical signs, resulting in complete healing, is urgently needed. Previously, we showed a hyperbaric oxygen (HBO)-protective effect against experimental CM. Here, we provide molecular evidence that HBO targets brain endothelial cells by decreasing their activation and inhibits parasite and leukocyte accumulation, thus improving cerebral microcirculatory blood flow. HBO treatment increased the expression of aryl hydrocarbon receptor over hypoxia-inducible factor 1-α (HIF-1α), an oxygen-sensitive cytosolic receptor, along with decreased indoleamine 2,3-dioxygenase 1 expression and kynurenine levels. Moreover, ablation of HIF-1α expression in endothelial cells in mice conferred protection against CM and improved survival. We propose that HBO should be pursued as an adjunctive therapy in CM patients to prolong survival and diminish deleterious proinflammatory reaction. Furthermore, our data support the use of HBO in therapeutic strategies to improve outcomes of non-CM disorders affecting the brain.-Bastos, M. F., Kayano, A. C. A. V., Silva-Filho, J. L., Dos-Santos, J. C. K., Judice, C., Blanco, Y. C., Shryock, N., Sercundes, M. K., Ortolan, L. S., Francelin, C., Leite, J. A., Oliveira, R., Elias, R. M., Câmara, N. O. S., Lopes, S. C. P., Albrecht, L., Farias, A. S., Vicente, C. P., Werneck, C. C., Giorgio, S., Verinaud, L., Epiphanio, S., Marinho, C. R. F., Lalwani, P., Amino, R., Aliberti, J., Costa, F. T. M. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria.


Assuntos
Encéfalo/metabolismo , Hipóxia/metabolismo , Cinurenina/metabolismo , Malária Cerebral/metabolismo , Oxigênio/metabolismo , Animais , Circulação Cerebrovascular/fisiologia , Células Endoteliais/metabolismo , Feminino , Oxigenoterapia Hiperbárica/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/fisiologia
4.
Exp Parasitol ; 170: 90-99, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27663467

RESUMO

The var gene-encoded erythrocyte membrane protein-1 of Plasmodium falciparum (PfEMP-1) is the main variant surface antigen (VSA) expressed on infected erythrocytes. The rate at which antibody responses to VSA expressed by circulating parasites are acquired depends on the size of the local VSA repertoire and the frequency of exposure to new VSA. Because parasites from areas with declining malaria endemicity, such as the Amazon, typically express a restricted PfEMP-1 repertoire, we hypothesized that Amazonians would rapidly acquire antibodies to most locally circulating VSA. Consistent with our expectations, the analysis of 5878 sequence tags expressed by 10 local P. falciparum samples revealed little PfEMP-1 DBL1α domain diversity. Among the most commonly expressed DBL1α types, 45% were shared by two or more independent parasite lines. Nevertheless, Amazonians displayed major gaps in their repertoire of anti-VSA antibodies, although the breadth of anti-VSA antibody responses correlated positively with their cumulative exposure to malaria. We found little antibody cross-reactivity even when testing VSA from related parasites expressing the same dominant DBL1α types. We conclude that variant-specific immunity to P. falciparum VSAs develops slowly despite the relatively restricted PfEMP-1 repertoire found in low-endemicity settings.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Antiprotozoários/metabolismo , Variação Antigênica , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Brasil/epidemiologia , Células CHO , Criança , Pré-Escolar , Cricetinae , Cricetulus , Estudos Transversais , Doenças Endêmicas/estatística & dados numéricos , Variação Genética , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/imunologia , Adulto Jovem
5.
Infect Immun ; 84(4): 874-882, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26831465

RESUMO

Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high, at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patient clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO), and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate the host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.


Assuntos
Monóxido de Carbono/uso terapêutico , Oxigenoterapia Hiperbárica/métodos , Malária/terapia , Óxido Nítrico/uso terapêutico , Humanos , Malária/mortalidade , Malária/fisiopatologia
6.
Antimicrob Agents Chemother ; 58(4): 1862-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395239

RESUMO

Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria.


Assuntos
Antimaláricos/farmacologia , Sulfatos de Condroitina/farmacologia , Merozoítos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/efeitos adversos , Células Cultivadas , Sulfatos de Condroitina/efeitos adversos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Células Hep G2 , Humanos , Pepinos-do-Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...