Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Eur Biophys J ; 53(4): 225-238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613566

RESUMO

Calibration of titration calorimeters is an ongoing problem, particularly with calorimeters with reaction vessel volumes < 10 mL in which an electrical calibration heater is positioned outside the calorimetric vessel. Consequently, a chemical reaction with a known enthalpy change must be used to accurately calibrate these calorimeters. This work proposes the use of standard solutions of potassium acid phthalate (KHP) titrated into solutions of excess sodium hydroxide (NaOH) or excess tris(hydroxymethyl)aminomethane (TRIS) as standard reactions to determine the collective accuracy of the relevant variables in a determination of the molar enthalpy change for a reaction. KHP is readily available in high purity, weighable for easy preparation of solutions with accurately known concentrations, stable in solution, not compromised by side reactions with common contaminants such as atmospheric CO2, and non-corrosive to materials used in calorimeter construction. Molar enthalpy changes for these reactions were calculated from 0 to 60 °C from reliable literature data for the pKa of KHP, the molar enthalpy change for protonation of TRIS, and the molar enthalpy change for ionization of water. The feasibility of using these reactions as enthalpic standards was tested in several calorimeters; a 50 mL CSC 4300, a 185 µL NanoITC, a 1.4 mL VP-ITC, and a TAM III with 1 mL reaction vessels. The results from the 50 mL CSC 4300, which was accurately calibrated with an electric heater, verified the accuracy of the calculated standard values for the molar enthalpy changes of the proposed reactions.


Assuntos
Calorimetria , Hidróxido de Sódio , Trometamina , Hidróxido de Sódio/química , Calibragem , Trometamina/química , Temperatura , Padrões de Referência , Termodinâmica
2.
J Funct Biomater ; 15(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535260

RESUMO

The study and characterization of the biophysical properties of membranes and drug-membrane interactions represent a critical step in drug development, as biological membranes act as a barrier that the drug must overcome to reach its active site. Liposomes are widely used in drug delivery to circumvent the poor aqueous solubility of most drugs, improving systemic bioavailability and pharmacokinetics. Further, they can be targeted to deliver to specific disease sites, thus decreasing drug load, and reducing side effects and poor adherence to treatment. To improve drug solubility during liposome preparation, DMSO is the most widely used solvent. This raises concern about the potential effect of DMSO on membranes and leads us to investigate, using DSC and EPR, the influence of DMSO on the behavior of lipid model membranes of DMPC and DPPC. In addition, we tested the influence of DMSO on drug-membrane interaction, using compounds with different hydrophobicity and varying DMSO content, using the same experimental techniques. Overall, it was found that with up to 10% DMSO, changes in the bilayer fluidity or the thermotropic properties of the studied liposomes were not significant, within the experimental uncertainty. For higher concentrations of DMSO, there is a stabilization of both the gel and the rippled gel phases, and increased bilayer fluidity of DMPC and DPPC liposomes leading to an increase in membrane permeability.

3.
Langmuir ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343280

RESUMO

Thin films of ionic liquids (ILs) have gained significant attention due to their unique properties and broad applications. Extensive research has focused on studying the influence of ILs' chemical composition and substrate characteristics on the structure and morphology of IL films at the nano- and mesoscopic scales. This study explores the impact of carbon-coated surfaces on the morphology and wetting behavior of a series of alkylimidazolium-based ILs. Specifically, this work investigates the effect of carbon coating on the morphology and wetting behavior of short-chain ([C2C1im][NTf2] and [C2C1im][OTf]) and long-chain ([C8C1im][NTf2] and [C8C1im][OTf]) ILs deposited on indium tin oxide (ITO), silver (Ag), and gold (Au) substrates. A reproducible vapor deposition methodology was utilized for the deposition process. High-resolution scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were used to analyze the morphological and structural characteristics of the substrates and obtained IL films. The experimental data revealed that the IL films deposited on carbon-coated Au substrates showed minor changes in their morphology compared to that of the films deposited on clean Au surfaces. However, the presence of carbon coatings on the ITO and Ag surfaces led to significant morphological alterations in the IL films. Specifically, for short-chain ILs, the carbon film surface induced 2D growth of the IL film, followed by subsequent island growth. In contrast, for long-chain ILs deposited on carbon surfaces, layer-by-layer growth occurred without island formation, resulting in highly uniform and coalesced IL films. The extent of morphological changes observed in the IL films was found to be influenced by two crucial factors: the thickness of the carbon film on the substrate surface and the amount of IL deposition.

4.
Mol Oncol ; 17(12): 2709-2727, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533407

RESUMO

Most patients with muscle-invasive bladder cancer (MIBC) are not cured with platinum chemotherapy. Up-regulation of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) is a major mechanism underlying chemoresistance, suggesting that its pharmacological inhibition may increase platinum efficacy. NF-κB signaling was investigated in two patient cohorts. The Cancer Genome Atlas (TCGA) was used to correlate NF-κB signaling and patient survival. The efficacy of cisplatin plus the NF-κB inhibitor dimethylaminoparthenolide (DMAPT) versus cisplatin or DMAPT alone was tested in vitro. Xenografted and immunocompetent MIBC mouse models were studied in vivo. Platinum-naive claudin-low MIBC showed constitutive NF-κB signaling and this was associated with reduced disease-specific survival in TCGA patients. Chemotherapy up-regulated NF-κB signaling and chemoresistance-associated genes, including SPHK1, PLAUR, and SERPINE1. In mice, DMAPT significantly improved the efficacy of cisplatin in both models. The combination preserved body weight, renal function, and morphology, reduced muscle fatigue and IL-6 serum levels, and did not aggravate immuno-hematological toxicity compared with cisplatin alone. These data provide a rationale for combining NF-κB inhibition with platinum-based chemotherapy and conducting a clinical trial in MIBC patients.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Camundongos , Animais , NF-kappa B/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Músculos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Phys Chem Chem Phys ; 25(16): 11227-11236, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039782

RESUMO

The solid-liquid phase behaviour of two tertiary alcohols, perfluoro-tert-butanol and tert-butanol, was studied here using experimental (ITC, DSC and density measurements) and theoretical (MD simulations) approaches. The phase diagram of the binary mixture reveals highly negative deviations from ideality at low concentrations, as well as the formation of co-crystals and is characterized by two eutectic points, a congruent melting point and a peritectic reaction corresponding to TBH : TBF stoichiometries of 2 : 1 and 1 : 1 respectively. Excess molar enthalpies and volumes were calculated, showing negative and positive deviations from ideality, respectively. The effect of acidity, stereochemical hindrance and phobic effects and how they affect intermolecular interactions in these binary mixtures is discussed, with the aim of designing and fine-tuning type V deep eutectic solvents. The results showed that the fluorination of tertiary alcohols can be used for the tuning of the mixing properties and solid-liquid phase diagrams.

6.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049791

RESUMO

This work reports the formation of silver nanoparticles (AgNPs) by sputter deposition in thin films of three different ionic liquids (ILs) with the same anion (bis(trifluoromethylsulfonyl)imide) and cation (imidazolium), but with different alkyl chain lengths and symmetries in the cationic moiety ([C4C1im][NTf2], [C2C2im][NTf2], and [C5C5im][NTf2]). Ionic liquid (IL) films in the form of microdroplets with different thicknesses (200 to 800 monolayers) were obtained through vacuum thermal evaporation onto glass substrates coated with indium tin oxide (ITO). The sputtering process of the Ag onto the ILs when conducted simultaneously with argon plasma promoted the coalescence of the ILs' droplets and the formation, incorporation, and stabilization of the metallic nanoparticles in the coalesced IL films. The formation/stabilization of the AgNPs in the IL films was confirmed using high-resolution scanning electron microscopy (SEM) and UV-Vis spectroscopy. It was found that the IL films with larger thicknesses (600 and 800 monolayers) were better media for the formation of AgNPs. Among the ILs used, [C5C5im][NTf2] was found to be particularly promising for the stabilization of AgNPs. The use of larger IL droplets as capture media was found to promote a better stabilization of the AgNPs, thereby reducing their tendency to aggregate.

7.
Insects ; 14(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37103181

RESUMO

Maize grains represent a significant contribution for assuring food safety all over the globe. Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae), also known as the maize weevil, is one of the most destructive pests in stored maize, causing qualitative and quantitative losses. To control S. zeamais populations in maize storage sites, synthetical chemical insecticides are applied. However, these are often used wastefully, have environmental implications, and can induce the development of resistant populations. In this work, the insecticidal and grain protecting efficacy of an innovative macro-capsule delivery device, loaded with essential oils from Clove bud and Pennyroyal, as well as their combined solutions, was tested against naturally S. zeamais-infested maize grains. The blend of both compounds incorporated in a controlled release device reduced losses by more than 45% over a long storage period of twenty weeks, diminishing the survivability of maize weevils by over 90%. The usage of the blend at a concentration of 370 µL⋅Lair-1 with an antioxidant showed the best results, however, by halving the concentration (185 µL⋅Lair-1), a significant control of S. zeamais populations was still achieved.

8.
Food Chem Toxicol ; 174: 113689, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36858299

RESUMO

Punica granatum L. (pomegranate) has been used in functional foods due to its various health benefits. However, the in vivo biological potential of its leaf remains little known. This study has aimed to characterize the antineoplastic and toxicological properties of using pomegranate leaf infusion (PLI) on transgenic mice carrying human papillomavirus (HPV) type 16 oncogenes. Thirty-eight mice were divided into 3 wild-type (WT) and 3 transgenic (HPV) groups, with exposure to 0.5% PLI, 1.0% PLI, and water. The animals' body weight, drink and food consumption were recorded. Internal organs, skin samples and intracardiac blood were collected to evaluate toxicological parameters, neoplastic lesions and oxidative stress. The results indicated that PLI was safe as no mortality, no behavioural disorders and no significant differences in the levels of microhematocrit, serum biochemical markers, internal organ histology, and oxidative stress was found among the WT groups. Histological analysis revealed that HPV animals that consumed PLI exhibited reduced hepatic, renal and cutaneous lesions compared with the HPV control group. Low-dose PLI consumption significantly diminished renal hydronephrosis lesions and relieved dysplasia and carcinoma lesions in the chest skin. Oxidative stress analysis showed that low-dose PLI consumption may have more benefits than high-dose PLI. These results suggest that oral administration of PLI has the potential to alleviate non-neoplastic and neoplastic lesions against HPV16-induced organ and skin injuries, though this requires further scientific research studies.


Assuntos
Antineoplásicos , Infecções por Papillomavirus , Punica granatum , Camundongos , Animais , Humanos , Camundongos Transgênicos , Papillomavirus Humano 16 , Infecções por Papillomavirus/patologia , Folhas de Planta
9.
Biomedicines ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36289857

RESUMO

Essential oils are natural compounds used by humans for scientific purposes due to their wide range of properties. Eugenol is mostly present in clove oil, while pulegone is the main constituent of pennyroyal oil. To guarantee the safe use of eugenol and pulegone for both humans and animals, this study addressed, for the first time, the effects of these compounds, at low doses (chronic toxicity) and high doses (acute toxicity), in laboratory animals. Thirty-five FVB/n female mice were randomly assigned to seven groups (n = 5): group I (control, non-additive diet); group II (2.6 mg of eugenol + 2.6 mg of pulegone); group III (5.2 mg of eugenol + 5.2 mg of pulegone); group IV (7.8 mg of eugenol + 7.8 mg of pulegone); group V (7.8 mg of eugenol); group VI (7.8 mg of pulegone); and group VII (1000 mg of eugenol + 1000 mg of pulegone). The compounds were administered in the food. Groups I to VI were integrated into the chronic toxicity study, lasting 28 days, and group VII was used in the acute toxicity study, lasting 7 days. Animals were monitored to assess their general welfare. Water and food intake, as well as body weight, were recorded. On the 29th day, all animals were euthanized by an overdose of ketamine and xylazine, and a complete necropsy was performed. Blood samples were collected directly from the heart for microhematocrit and serum analysis, as well as for comet assay. Organs were collected, weighed, and fixed in formaldehyde for further histological analysis and enzymatic assay. Eugenol and pulegone induced behavioral changes in the animals, namely in the posture, hair appearance and grooming, and in mental status. These compounds also caused a decrease in the animals' body weight, as well as in the food and water consumption. A mortality rate of 20% was registered in the acute toxicity group. Both compounds modulated the serum levels of triglycerides and alanine aminotransferase. Eugenol and pulegone induced genetic damage in all animals. Eugenol increased the activity of the CAT enzyme. Both compounds increased the GR enzyme at the highest dose. Moreover, pulegone administered as a single compound increased the activity of the GST enzyme. Histopathological analysis revealed inflammatory infiltrates in the lungs of groups II, III, and IV. The results suggest that eugenol and pulegone may exert beneficial or harmful effects, depending on the dose, and if applied alone or in combination.

10.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293226

RESUMO

The study of human papillomavirus (HPV)-induced carcinogenesis uses multiple in vivo mouse models, one of which relies on the cytokeratin 14 gene promoter to drive the expression of all HPV early oncogenes. This study aimed to determine the HPV16 variant and sublineage present in the K14HPV16 mouse model. This information can be considered of great importance to further enhance this K14HPV16 model as an essential research tool and optimize its use for basic and translational studies. Our study evaluated HPV DNA from 17 samples isolated from 4 animals, both wild-type (n = 2) and HPV16-transgenic mice (n = 2). Total DNA was extracted from tissues and the detection of HPV16 was performed using a qPCR multiplex. HPV16-positive samples were subsequently whole-genome sequenced by next-generation sequencing techniques. The phylogenetic positioning clearly shows K14HPV16 samples clustering together in the sub-lineage A1 (NC001526.4). A comparative genome analysis of K14HPV16 samples revealed three mutations to the human papillomaviruses type 16 sublineage A1 representative strain. Knowledge of the HPV 16 variant is fundamental, and these findings will allow the rational use of this animal model to explore the role of the A1 sublineage in HPV-driven cancer.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Queratina-14/genética , Filogenia , Neoplasias do Colo do Útero/genética , Papillomavirus Humano 16 , Papillomaviridae/genética , Carcinogênese/genética , Oncogenes
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077423

RESUMO

The 17-beta-hydroxysteroid dehydrogenase type 3 (17-ß-HSD3) enzyme converts androstenedione to testosterone and is encoded by the HSD17B3 gene. Homozygous or compound heterozygous HSD17B3 mutations block the synthesis of testosterone in the fetal testis, resulting in a Disorder of Sex Development (DSD). We describe a child raised as a female in whom the discovery of testes in the inguinal canals led to a genetic study by whole exome sequencing (WES) and to the identification of a compound heterozygous mutation of the HSD17B3 gene (c.608C>T, p.Ala203Val, and c.645A>T, p.Glu215Asp). Furthermore, we review all HSD17B3 mutations published so far in cases of 17-ß-HSD3 deficiency. A total of 70 different HSD17B3 mutations have so far been reported in 239 patients from 187 families. A total of 118 families had homozygous mutations, 63 had compound heterozygous mutations and six had undetermined genotypes. Mutations occurred in all 11 exons and were missense (55%), splice-site (29%), small deletions and insertions (7%), nonsense (5%), and multiple exon deletions and duplications (2%). Several mutations were recurrent and missense mutations at codon 80 and the splice-site mutation c.277+4A>T each represented 17% of all mutated alleles. These findings may be useful to those involved in the clinical management and genetic diagnosis of this disorder.


Assuntos
17-Hidroxiesteroide Desidrogenases , Desenvolvimento Sexual , 17-Hidroxiesteroide Desidrogenases/deficiência , 17-Hidroxiesteroide Desidrogenases/genética , Criança , Transtorno 46,XY do Desenvolvimento Sexual , Feminino , Ginecomastia , Humanos , Masculino , Mutação , Erros Inatos do Metabolismo de Esteroides , Testosterona
12.
Artigo em Inglês | MEDLINE | ID: mdl-36001006

RESUMO

Summary: The coexistence of neurofibromatosis type 1 (NFT1) and Turner syndrome (TS) has only been reported in a few patients and may represent a diagnostic challenge. We describe the case of a 16-year-old girl, with a prior clinical diagnosis of NFT1, who was referred to Endocrinology appointments for the etiological study of primary amenorrhea. Evaluation of the anterior pituitary function was requested and hypergonadotropic hypogonadism was detected. During the etiological study, a 45X karyotype was found and TS was diagnosed. The fact that NFT1 can also be associated with short stature, short broad neck and hypertelorism was likely responsible for TS being diagnosed in late adolescence. As both TS and NFT1 are relatively common genetic disorders, it is important to be alert to the possibility that the presence of one disease does not invalidate the other. Learning points: The concomitant presence of two syndromes in the same patient is unlikely and represents a diagnostic challenge. Some phenotypic characteristics and clinical manifestations may be shared by several syndromes. Some syndromes, such as neurofibromatosis type 1 may have very heterogeneous presentations. It is important to be alert to the characteristics that are not explained by the initial diagnosis. If such features are present, diagnostic work-up must be performed regardless of the initial syndromic diagnosis.

13.
Cancers (Basel) ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565345

RESUMO

High-risk human papillomavirus (HPV) is the etiologic agent of several types of cancer. Mast cells' role as either a driving or opposing force for cancer progression remains controversial. MicroRNAs are dysregulated in several HPV-induced cancers, and can influence mast cell biology. The aim of this study was to evaluate mast cell infiltration and to identify microRNAs potentially regulating this process. Transgenic male mice (K14-HPV16; HPV+) and matched wild-type mice (HPV−) received 7,12-Dimethylbenz[a]anthracene (DMBA) (or vehicle) over 17 weeks. Following euthanasia, chest skin and ear tissue samples were collected. Mast cell infiltration was evaluated by immunohistochemistry. MicroRNAs associated with mast cell infiltration were identified using bioinformatic tools. MicroRNA and mRNA relative expression was evaluated by RT-qPCR. Immunohistochemistry showed increased mast cell infiltration in HPV+ mice (p < 0.001). DMBA did not have any statistically significant influence on this distribution. Ear tissue of HPV+ mice showed increased mast cell infiltration (p < 0.01) when compared with chest skin samples. Additionally, reduced relative expression of miR-125b-5p (p = 0.008, 2−ΔΔCt = 2.09) and miR-223-3p (p = 0.013, 2−ΔΔCt = 4.42) seems to be associated with mast cell infiltration and increased expression of target gene Cxcl10. These results indicate that HPV16 may increase mast cell infiltration by down-regulating miR-223-3p and miR-125b-5p.

14.
Phys Chem Chem Phys ; 24(21): 13343-13355, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608141

RESUMO

Ionic liquids (ILs) have been widely used for energy storage and conversion devices due to their negligible vapor pressure, high thermal stability, and outstanding interfacial properties. Notably, the interfacial nanostructure and the wettability of thin ionic liquid films on solid surfaces are of utmost relevance in nanosurface science and technology. Herein, a reproducible physical vapor deposition methodology was used to fabricate thin films of four alkylimidazolium bis(trifluoromethylsulfonyl)imide ILs. The effect of the cation alkyl chain length on the wettability of ILs was explored on different surfaces: gold (Au); silver (Ag); indium-tin oxide (ITO). High-resolution scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the morphology of the produced micro- and nanodroplets and films. SEM and AFM results revealed an island growth for all the ILs deposited on ITO and Ag surfaces, with a lower minimum free area to promote nucleation (MFAN) in Ag and higher wettability for ILs having larger non-polar domains. The low wettability of ITO by the studied ILs was highlighted. For long-chain ILs, nucleation and growth mechanisms were strongly conditioned by coalescence processes. The results also supported the higher affinity of the ILs to the Au surface. The increase in the length of the cation alkyl chain was found to promote a better film adhesion inducing a 2D growth and higher wetting ability.

15.
J. physiol. biochem ; 78(2): 439-455, May. 2022.
Artigo em Inglês | IBECS | ID: ibc-215971

RESUMO

Cachexia is associated with poor prognosis in cancer patients, and inflammation is one of its main drive factors. MicroRNAs have recently emerged as important players in cancer cachexia and are involved in reciprocal regulation networks with pro-inflammatory signaling pathways. We hypothesize that inflammation-driven cancer cachexia is regulated by specific microRNAs. The aim of this study is to explore the expression and role of inflammation-related microRNAs in muscle wasting. HPV16-transgenic mice develop systemic inflammation and muscle wasting and are a model for cancer cachexia. We employed gastrocnemius muscle samples from these mice to study the expression of microRNAs. Bioinformatic tools were then used to explore their potential role in muscle wasting. Among the microRNAs studied, miR-223-3p (p = 0.004), let-7b-5p (p = 0.034), miR-21a-5p (p = 0.034), miR-150-5p (p = 0.027), and miR-155-5p (p = 0.011) were significantly upregulated in muscles from cachectic mice. In silico analysis showed that these microRNAs participate in several processes related to muscle wasting, including muscle structure development and regulation of the MAPK pathway. When analyzing protein–protein interactions (PPI)-networks, two major clusters and the top 10 hubs were obtained. From the top 10, Kras (p = 0.050) and Ccdn1 (p = 0.009) were downregulated in cachectic muscles, as well as Map2k3 (p = 0.007). These results show that miR-223-3p, let-7b-5p, miR-21a-5p, miR-150-5p, and miR-155-5p, play a role in muscle wasting in HPV16 transgenic mice, possible through regulating the MAPK cascades. Future experimental studies are required to validate our in silico analysis, and to explore the usefulness of these microRNAs and MAPK signaling as new potential biomarkers or therapy targets for cancer cachexia. (AU)


Assuntos
Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/complicações , Neoplasias/genética , Papillomavirus Humano 16 , Caquexia , Inflamação , Camundongos Transgênicos
16.
Anticancer Res ; 42(5): 2443-2460, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35489755

RESUMO

AIM: To evaluate the expression of lincRNA-p21, H19, EMX2OS, SNHG12 and MALAT1 in a mouse model of human papillomavirus 16 (HPV16)-induced carcinogenesis and cachexia. MATERIALS AND METHODS: Chest skin, ear, tongue, penis and gastrocnemius muscle samples from wild-type mice (HPV-) and K14-HPV16 male mice (HPV+) were collected to evaluate the expression of the selected lncRNAs using real-time PCR (qPCR). RESULTS: In chest skin and ear, H19, SNHG12, EMX2OS and lincRNA-p21 were down-regulated in HPV+ versus HPV- mice. In tongue and penile tissues, there was only down-regulation of lincRNA-p21 in HPV+ mice. Additionally, in penile tissue, lincRNA-p21 expression decreased in HPV-induced lesions comparing with normal tissues. In gastrocnemius muscle, MALAT1 was up-regulated and lincRNA-p21 was down-regulated in HPV+ versus HPV-mice. CONCLUSION: H19, SNHG12, EMX2OS and lincRNA-p21 may be involved in HPV-induced carcinogenesis. In addition, MALAT1 and lincRNA-p21 may play a role in muscle wasting and contribute to cancer cachexia.


Assuntos
Infecções por Papillomavirus , RNA Longo não Codificante , Animais , Caquexia/genética , Carcinogênese/genética , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Masculino , Camundongos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
J Physiol Biochem ; 78(2): 439-455, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35298788

RESUMO

Cachexia is associated with poor prognosis in cancer patients, and inflammation is one of its main drive factors. MicroRNAs have recently emerged as important players in cancer cachexia and are involved in reciprocal regulation networks with pro-inflammatory signaling pathways. We hypothesize that inflammation-driven cancer cachexia is regulated by specific microRNAs. The aim of this study is to explore the expression and role of inflammation-related microRNAs in muscle wasting. HPV16-transgenic mice develop systemic inflammation and muscle wasting and are a model for cancer cachexia. We employed gastrocnemius muscle samples from these mice to study the expression of microRNAs. Bioinformatic tools were then used to explore their potential role in muscle wasting. Among the microRNAs studied, miR-223-3p (p = 0.004), let-7b-5p (p = 0.034), miR-21a-5p (p = 0.034), miR-150-5p (p = 0.027), and miR-155-5p (p = 0.011) were significantly upregulated in muscles from cachectic mice. In silico analysis showed that these microRNAs participate in several processes related to muscle wasting, including muscle structure development and regulation of the MAPK pathway. When analyzing protein-protein interactions (PPI)-networks, two major clusters and the top 10 hubs were obtained. From the top 10, Kras (p = 0.050) and Ccdn1 (p = 0.009) were downregulated in cachectic muscles, as well as Map2k3 (p = 0.007). These results show that miR-223-3p, let-7b-5p, miR-21a-5p, miR-150-5p, and miR-155-5p, play a role in muscle wasting in HPV16 transgenic mice, possible through regulating the MAPK cascades. Future experimental studies are required to validate our in silico analysis, and to explore the usefulness of these microRNAs and MAPK signaling as new potential biomarkers or therapy targets for cancer cachexia.


Assuntos
MicroRNAs , Neoplasias , Animais , Caquexia/genética , Caquexia/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Inflamação , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/complicações , Neoplasias/genética
18.
Comput Struct Biotechnol J ; 20: 874-881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222846

RESUMO

Host defense peptides (HDPs) are short cationic peptides that play a key role in the innate immune response of all living organisms. Their action mechanism does not depend on the presence of protein receptors, but on their ability to target and disrupt the membranes of a wide range of pathogenic and pathologic cells which are recognized by their specific compositions, typically with a relatively high concentration of anionic lipids. Lipid profile singularities have been found in cancer, inflammation, bacteria, viral infections, and even in senescent cells, enabling the possibility to use them as therapeutic targets and/or diagnostic biomarkers. Molecular dynamics (MD) simulations are extraordinarily well suited to explore how HDPs interact with membrane models, providing a large amount of qualitative and quantitative information that, nowadays, cannot be assessed by wet-lab methods at the same level of temporal and spatial resolution. Here, we present SuPepMem, an open-access repository containing MD simulations of different natural and artificial peptides with potential membrane lysis activity, interacting with membrane models of healthy mammal, bacteria, viruses, cancer or senescent cells. In addition to a description of the HDPs and the target systems, SuPepMem provides both the input files necessary to run the simulations and also the results of some selected analyses, including structural and MD-based quantitative descriptors. These descriptors are expected to be useful to train machine learning algorithms that could contribute to design new therapeutic peptides. Tools for comparative analysis between different HDPs and model membranes, as well as to restrict the queries to structural and time-averaged properties are also available. SuPepMem is a living project, that will continuously grow with more simulations including peptides of different sequences, MD simulations with different number of peptide units, more membrane models and also several resolution levels. The database is open to MD simulations from other users (after quality check by the SuPepMem team). SuPepMem is freely available under https://supepmem.com/.

20.
Biochim Biophys Acta Biomembr ; 1864(1): 183729, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506796

RESUMO

Fluorescence spectroscopy is used to characterize the partition of three second-generation D,L-α-cyclic peptides to two lipid model membranes. The peptides have proven antimicrobial activity, particularly against Gram positive bacteria, and the model membranes are formed of either with 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) or its mixture with 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), at a molar ratio of (1:1). The peptide's intrinsic fluorescence was used in the Steady State and/or Time Resolved Fluorescence Spectroscopy experiments, showing that the peptides bind to the membranes, and the extent of their partition is thereof quantified. The peptide-induced membrane leakage was followed using an encapsulated fluorescent dye. Overall, the partition is mainly driven by electrostatics, but also involves hydrophobic interactions. The introduction of a hydrocarbon tail in one of the residues of the parent peptide, CPR, adjacent to the tryptophan (Trp) residue, significantly improves the partition of the modified peptides, CPRT10 and CPRT14, to both membrane systems. Further, we show that the length of the tail is the main distinguishing factor for the extension of the partition process. The parent peptide induces very limited leakage, at odds with the peptides with tail, that promote fast leakage, increasing in most cases with peptide concentration, and being almost complete for the highest peptide concentration and negatively charged membranes. Overall, the results help the unravelling of the antimicrobial action of these peptides and are well in line with their proven high antimicrobial activity.


Assuntos
Antibacterianos/química , Peptídeos Antimicrobianos/química , Lipídeos de Membrana/química , Peptídeos Cíclicos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/patogenicidade , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Membranas/química , Peptídeos Cíclicos/farmacologia , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...