Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neurosci Lett ; 746: 135660, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33476710

RESUMO

As an integrative discipline, neuroscience can serve as a vehicle for the development of integrative thinking skills and broad-based scientific proficiency in undergraduate students. Undergraduate neuroscience curricula incorporate fundamental concepts from multiple disciplines. Deepening the explicit exploration of these connections in a neuroscience core curriculum has the potential to support more meaningful and successful undergraduate STEM learning for neuroscience students. Curriculum and faculty development activities related to an integrative core curriculum can provide opportunities for faculty across disciplines and departments to advance common goals of inclusive excellence in STEM. These efforts facilitate analysis of the institutional STEM curriculum from the student perspective, and assist in creating an internal locus of accountability for diversity, equity, and inclusion within the institution. Faculty at the College of the Holy Cross have undertaken the collaborative design and implementation of an integrative core curriculum for neuroscience that embraces principles of inclusive pedagogy, emphasizes the connections between neuroscience and other disciplines, and guides students to develop broad proficiency in fundamental STEM concepts and skills.


Assuntos
Currículo/tendências , Neurociências/educação , Neurociências/tendências , Desenvolvimento de Programas/métodos , Estudantes , Universidades/tendências , Escolaridade , Humanos
4.
J Undergrad Neurosci Educ ; 16(1): A102-A111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29371849

RESUMO

Neuroscience is an integrative discipline for which students must achieve broad-based proficiency in many of the sciences. We are motivated by the premise that student pursuit of proficiency in science, technology, engineering, and mathematics (STEM) can be supported by awareness of the application of knowledge and tools from the various disciplines for solving complex problems. We refer to this awareness as "interdisciplinary awareness." Faculty from biology, chemistry, mathematics/computer science, physics, and psychology departments contributed to a novel integrative introductory neuroscience course with no pre-requisites. STEM concepts were taught in "flipped" class modules throughout the semester: Students viewed brief videos and completed accompanying homework assignments independently. In subsequent class meetings, students applied the STEM concepts to understand nervous system structure and function through engaged learning activities. The integrative introduction to neuroscience course was compared to two other courses to test the hypothesis that it would lead to greater gains in interdisciplinary awareness than courses that overlap in content but were not designed for this specific goal. Data on interdisciplinary awareness were collected using previously published tools at the beginning and end of each course, enabling within-subject analyses. Students in the integrative course significantly increased their identification of scientific terms as relevant to neuroscience in a term-discipline relevance survey and increased their use of terms related to levels of analysis (e.g., molecular, cellular, systems) in response to an open-ended prompt. These gains were seen over time within the integrative introduction to neuroscience course as well as relative to the other two courses.

5.
Neurobiol Learn Mem ; 136: 244-250, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27633914

RESUMO

We have used mutant mice to probe the roles of the endogenous co-agonists of the NMDA receptor (NMDAR), D-serine and glycine, in fear learning and memory. Serine racemase knockout (SR-/-) mice have less than 15% of wild type forebrain levels of D-serine, whereas glycine transporter 1 heterozygous knockout (GlyT1+/-) mice have elevated synaptic glycine. While cued fear was normal in both delay and trace conditioned mice of both mutant genotypes, contextual fear was affected in trace conditioned subjects: SR-/- mice showed decreased contextual freezing, whereas GlyT1+/- mice showed elevated contextual freezing. These results indicate that endogenous co-agonists of the NMDAR modulate the conditioning of contextual fear responses, particularly in trace conditioning. They further suggest that endogenous glycine can compensate for the D-serine deficiency in cued and contextual fear following delay conditioning.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Glicina/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Serina/fisiologia , Animais , Sinais (Psicologia) , Glicina/deficiência , Proteínas da Membrana Plasmática de Transporte de Glicina/deficiência , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Serina/deficiência
6.
Behav Brain Res ; 314: 215-25, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27498148

RESUMO

The influence of housing on cognition and emotional regulation in mice presents a problem for the study of genetic and environmental risk factors for neuropsychiatric disorders: standard laboratory housing may result in low levels of cognitive function or altered levels of anxiety that leave little room for assessment of deleterious effects of experimental manipulations. The use of enriched environment (EE) may allow for the measurement of a wider range of performance in cognitive domains. Cognitive and behavioral effects of EE in male mice have not been widely reproduced, perhaps due to variability in the application of enrichment protocols, and the effects of EE in female mice have not been widely studied. We have developed an EE protocol using common laboratory equipment that, without a running wheel for exercise, results in significant cognitive and behavioral effects relative to standard laboratory housing conditions. We compared male and female wild-type C57BL/6J mice reared from weaning age in an EE to those reared in a standard environment (SE), using common measures of anxiety-like behavior, sensory gating, sociability, and spatial learning and memory. Sex was a significant factor in relevant elevated plus maze (EPM) measures, and bordered on significance in a social interaction (SI) assay. Effects of EE on anxiety-like behavior and sociability were indicative of a general increase in exploratory activity. In male and female mice, EE resulted in reduced prepulse inhibition (PPI) of the acoustic startle response, and enhanced spatial learning and use of spatially precise strategies in a Morris water maze task.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Filtro Sensorial , Habilidades Sociais , Aprendizagem Espacial/fisiologia , Animais , Animais Recém-Nascidos , Meio Ambiente , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia
7.
Proc Natl Acad Sci U S A ; 110(26): E2400-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23729812

RESUMO

Schizophrenia is characterized by reduced hippocampal volume, decreased dendritic spine density, altered neuroplasticity signaling pathways, and cognitive deficits associated with impaired hippocampal function. We sought to determine whether this diverse pathology could be linked to NMDA receptor (NMDAR) hypofunction, and thus used the serine racemase-null mutant mouse (SR(-/-)), which has less than 10% of normal brain D-serine, an NMDAR coagonist. We found that D-serine was necessary for the maintenance of long-term potentiation in the adult hippocampal dentate gyrus and for full NMDAR activity on granule cells. SR(-/-) mice had reduced dendritic spines and hippocampal volume. These morphological changes were paralleled by diminished BDNF/Akt/mammalian target of rapamycin (mTOR) signaling and impaired performance on a trace-conditioning memory task. Chronic D-serine treatment normalized the electrophysiological, neurochemical, and cognitive deficits in SR(-/-) mice. These results demonstrate that NMDAR hypofunction can reproduce the numerous hippocampal deficits associated with schizophrenia, which can be reversed by chronic peripheral D-serine treatment.


Assuntos
Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/etiologia , Esquizofrenia/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Humanos , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Receptor trkB/metabolismo , Fatores de Risco , Esquizofrenia/tratamento farmacológico , Serina/metabolismo , Serina/uso terapêutico , Transdução de Sinais
8.
Psychopharmacology (Berl) ; 230(1): 57-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23660600

RESUMO

RATIONALE: Schizophrenia is a severe, persistent, and fairly common mental illness. Haloperidol is widely used and is effective against the symptoms of psychosis seen in schizophrenia. Chronic oral haloperidol administration decreased the number of astrocytes in the parietal cortex of macaque monkeys (Konopaske et al., Biol Psych 63:759-765, 2008). Since astrocytes play a key role in glutamate metabolism, chronic haloperidol administration was hypothesized to modulate astrocyte metabolic function and glutamate homeostasis. OBJECTIVES: This study investigated the effects of chronic haloperidol administration on astrocyte metabolic activity and glutamate, glutamine, and GABA homeostasis. METHODS: We used ex vivo ¹³C magnetic resonance spectroscopy along with high-performance liquid chromatography after [1-¹³C]glucose and [1,2-¹³C]acetate administration to analyze forebrain tissue from rats administered oral haloperidol for 1 or 6 months. RESULTS: Administration of haloperidol for 1 month produced no changes in ¹³C labeling of glutamate, glutamine, or GABA, or in their total levels. However, a 6-month haloperidol administration increased ¹³C labeling of glutamine by [1,2-¹³C]acetate. Moreover, total GABA levels were also increased. Haloperidol administration also increased the acetate/glucose utilization ratio for glutamine in the 6-month cohort. CONCLUSIONS: Chronic haloperidol administration in rats appears to increase forebrain GABA production along with astrocyte metabolic activity. Studies exploring these processes in subjects with schizophrenia should take into account the potential confounding effects of antipsychotic medication treatment.


Assuntos
Antipsicóticos/farmacologia , Astrócitos/efeitos dos fármacos , Haloperidol/farmacologia , Prosencéfalo/efeitos dos fármacos , Animais , Antipsicóticos/administração & dosagem , Astrócitos/metabolismo , Cromatografia Líquida de Alta Pressão , Glucose/administração & dosagem , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Haloperidol/administração & dosagem , Homeostase , Espectroscopia de Ressonância Magnética , Masculino , Prosencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
9.
Nat Commun ; 4: 1760, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612301

RESUMO

Mechanisms of N-methyl-D-aspartate receptor-dependent synaptic plasticity contribute to the acquisition and retention of conditioned fear memory. However, synaptic rules which may determine the extent of N-methyl-D-aspartate receptor activation in the amygdala, a key structure implicated in fear learning, remain unknown. Here we show that the identity of the N-methyl-D-aspartate receptor glycine site agonist at synapses in the lateral nucleus of the amygdala may depend on the level of synaptic activation. Tonic activation of N-methyl-D-aspartate receptors at synapses in the amygdala under low activity conditions is supported by ambient D-serine, whereas glycine may be released from astrocytes in response to afferent impulses. The release of glycine may decode the increases in afferent activity levels into enhanced N-methyl-D-aspartate receptor-mediated synaptic events, serving an essential function in the induction of N-methyl-D-aspartate receptor-dependent long-term potentiation in fear conditioning pathways.


Assuntos
Tonsila do Cerebelo/metabolismo , Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , D-Aminoácido Oxidase/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Gliotoxina/toxicidade , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Serina/metabolismo , Sinapses/efeitos dos fármacos
10.
Cell Mol Neurobiol ; 32(4): 613-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22362148

RESUMO

D-serine, which is synthesized by the enzyme serine racemase (SR), is a co-agonist at the N-methyl-D-aspartate receptor (NMDAR). Crucial to an understanding of the signaling functions of D-serine is defining the sites responsible for its synthesis and release. In order to quantify the contributions of astrocytes and neurons to SR and D-serine localization, we used recombinant DNA techniques to effect cell type selective suppression of SR expression in astrocytes (aSRCKO) and in forebrain glutamatergic neurons (nSRCKO). The majority of SR is expressed in neurons: SR expression was reduced by ~65% in nSRCKO cerebral cortex and hippocampus, but only ~15% in aSRCKO as quantified by western blots. In contrast, nSRCKO is associated with only modest decreases in D-serine levels as quantified by HPLC, whereas D-serine levels were unaffected in aSRCKO mice. Liver expression of SR was increased by 35% in the nSRCKO, suggesting a role for peripheral SR in the maintenance of brain D-serine. Electrophysiologic studies of long-term potentiation (LTP) at the Schaffer collateral-CA1 pyramidal neuron synapse revealed no alterations in the aSRCKO mice versus wild-type. LTP induced by a single tetanic stimulus was reduced by nearly 70% in the nSRCKO mice. Furthermore, the mini-excitatory post-synaptic currents mediated by NMDA receptors but not by AMPA receptors were significantly reduced in nSRCKO mice. Our findings indicate that in forebrain, where D-serine appears to be the endogenous co-agonist at NMDA receptors, SR is predominantly expressed in glutamatergic neurons, and co-release of glutamate and D-serine is required for optimal activation of post-synaptic NMDA receptors.


Assuntos
Córtex Cerebral/enzimologia , Ácido Glutâmico/fisiologia , Neurônios/enzimologia , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Racemases e Epimerases/metabolismo
11.
Neurobiol Dis ; 45(2): 671-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22024716

RESUMO

There is substantial evidence, both pharmacological and genetic, that hypofunction of the N-methyl-d-aspartate receptor (NMDAR) is a core pathophysiological feature of schizophrenia. There are morphological brain changes associated with schizophrenia, including perturbations in the dendritic morphology of cortical pyramidal neurons and reduction in cortical volume. Our experiments investigated whether these changes in dendritic morphology could be recapitulated in a genetic model of NMDAR hypofunction, the serine racemase knockout (SR-/-) mouse. Pyramidal neurons in primary somatosensory cortex (S1) of SR-/- mice had reductions in the complexity, total length, and spine density of apical and basal dendrites. In accordance with reduced cortical neuropil, SR-/- mice also had reduced cortical volume as compared to wild type mice. Analysis of S1 mRNA by DNA microarray and gene expression analysis revealed gene changes in SR-/- that are associated with psychiatric and neurologic disorders, as well as neurodevelopment. The microarray analysis also identified reduced expression of brain derived neurotrophic factor (BDNF) in SR-/- mice. Follow-up analysis by ELISA confirmed a reduction of BDNF protein levels in the S1 of SR-/- mice. Finally, S1 pyramidal neurons in glycine transporter heterozygote (GlyT1+/-) mutants, which display enhanced NMDAR function, had increased dendritic spine density. These results suggest that proper NMDAR function is important for the arborization and spine density of pyramidal neurons in cortex. Moreover, they suggest that NMDAR hypofunction might, in part, be contributing to the dendritic and synaptic changes observed in schizophrenia and highlight this signaling pathway as a potential target for therapeutic intervention.


Assuntos
Dendritos/metabolismo , Dendritos/ultraestrutura , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/ultraestrutura , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Perfilação da Expressão Gênica , Glicina/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/ultraestrutura , Análise de Sequência com Séries de Oligonucleotídeos , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Receptores de N-Metil-D-Aspartato/agonistas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/fisiopatologia , Serina/metabolismo
12.
Neurosci Lett ; 488(3): 267-71, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21094213

RESUMO

Reduction in cortical presynaptic markers, notably parvalbumin (PV), for the chandelier subtype of inhibitory γ-amino-butyric acid (GABA) interneurons is a highly replicated post-mortem finding in schizophrenia. Evidence from genetic and pharmacological studies implicates hypofunction of N-methyl-d-aspartate receptor (NMDAR)-mediated glutamatergic signaling as a critical component of the pathophysiology of schizophrenia. Serine racemase (SR) produces the endogenous NMDAR co-agonist d-serine, and disruption of the SR gene results in reduced NMDAR signaling. SR null mutant (-/-) mice were used to study the link between NMDAR hypofunction and decreased PV expression, assessed by immunoreactive (IR) cell density in the medial prefrontal cortex and hippocampus and protein levels in brain homogenates from the frontal cortex and hippocampus. Contrary to expectations, SR -/- mice showed modest elevations in PV-IR cell density and no difference in PV expression in brain homogenate. To control for these surprising results, we investigated PV expression in mice and rats following subchronic phencyclidine or ketamine treatments in adulthood. PV expression was not affected by drug these treatment in either species, failing to reproduce previously published findings. Our findings challenge the hypothesis that pathological deficits in PV expression are simply a consequence of NMDAR hypofunction.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Parvalbuminas/biossíntese , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Western Blotting , Encéfalo/patologia , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/toxicidade , Glutamato Descarboxilase/biossíntese , Imuno-Histoquímica , Ketamina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Fenciclidina/toxicidade , Racemases e Epimerases/genética , Ratos , Ratos Sprague-Dawley , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia
13.
Psychopharmacology (Berl) ; 213(1): 143-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20865248

RESUMO

RATIONALE: Enhancement of N-methyl-D: -aspartate receptor (NMDAR) activity through its glycine modulatory site (GMS) is a novel therapeutic approach in schizophrenia. Brain concentrations of endogenous GMS agonist D: -serine and antagonist N-acetyl-aspartylglutamate are regulated by serine racemase (SR) and glutamic acid decarboxylase 2 (GCP2), respectively. Using mice genetically, under-expressing these enzymes may clarify the role of NMDAR-mediated neurotransmission in schizophrenia. OBJECTIVES: We investigated the behavioral effects of two psychotomimetic drugs, the noncompetitive NMDAR antagonist, phencyclidine (PCP; 0, 1.0, 3.0, or 6.0 mg/kg), and the indirect dopamine receptor agonist, amphetamine (AMPH; 0, 1.0, 2.0, or 4.0 mg/kg), in SR -/- and GCP2 -/+ mice. Outcome measures were locomotor activity and prepulse inhibition (PPI) of the acoustic startle reflex. Acute effects of an exogenous GMS antagonist, gavestinel (0, 3.0, or 10.0 mg/kg), on PCP-induced behaviors were examined in wild-type mice for comparison to the mutants with reduced GMS activity. RESULTS: PCP-induced hyperactivity was increased in GCP2 -/+ mice, and PCP-enhanced startle reactivity was increased in SR -/- mice. PCP disruption of PPI was unaffected in either mutant. In contrast, gavestinel attenuated PCP-induced PPI disruption without effect on baseline PPI or locomotor activity. AMPH effects were similar to controls in both mutant strains. CONCLUSIONS: The results of the PCP experiments demonstrate that convergence of pharmacological and genetic manipulations at NMDARs may confound the predictive validity of these preclinical assays for the effects of GMS activation in schizophrenia. The AMPH data provide additional evidence that hyperdopaminergia in schizophrenia may be distinct from NMDAR hypofunction.


Assuntos
Encéfalo/fisiologia , Alucinógenos/farmacologia , Atividade Motora/fisiologia , Inibição Neural/fisiologia , Racemases e Epimerases/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Reflexo de Sobressalto/fisiologia , Anfetamina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/fisiologia , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Fenciclidina/farmacologia , Racemases e Epimerases/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reflexo de Sobressalto/efeitos dos fármacos
14.
Synapse ; 63(8): 625-35, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19347959

RESUMO

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of N-methyl-D-aspartate receptors (NMDAR) has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate. NAAG is a neuropeptide that is an NMDAR antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDAR activation. To manipulate the expression of GCP II, LoxP sites were inserted flanking exons 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N > 200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory.


Assuntos
Glutamato Carboxipeptidase II/deficiência , Heterozigoto , Mutação/genética , Fenótipo , Estimulação Acústica/métodos , Animais , Comportamento Animal/fisiologia , Éxons/genética , Expressão Gênica/genética , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Relações Interpessoais , Memória/fisiologia , Camundongos , Camundongos Knockout , Atividade Motora/genética , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Filtro Sensorial/genética , Percepção Espacial/fisiologia
15.
Brain Res ; 1180: 1-6, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17936729

RESUMO

Mutations in the transcriptional repressor methyl CpG binding protein 2 (MeCP2) are responsible for most cases of Rett Syndrome (RS), a severe neurodevelopmental disorder characterized by developmental regression, minimal speech, seizures, postnatal microcephaly and hand stereotypies. Absence of the maternal copy of ubiquitin protein ligase 3A (UBE3A) results in Angelman syndrome, also a severe developmental disorder that shares some clinical features with RS. As MeCP2 regulates gene expression, this has led to the hypothesis that MeCP2 may regulate UBE3A expression; however, there are conflicting reports regarding the expression of Ube3a in MeCP2 null mutant mice. We have generated a novel MeCP2 mutant knock-in mouse with the mutation R168X, one of the most common mutations in patients with RS. These mice show features similar to RS, including hypoactivity, forelimb stereotypies, breathing irregularities, weight changes, hind limb atrophy, and scoliosis. The male mice experience early death. Analysis of Ube3a mRNA and protein levels in the Mecp2(R168X) male mice showed no significant difference in expression compared to their wild type littermates.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , RNA Mensageiro/metabolismo , Síndrome de Rett/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Mutantes , Mutagênese Sítio-Dirigida , Síndrome de Rett/genética , Ubiquitina-Proteína Ligases/genética
16.
Proc Natl Acad Sci U S A ; 103(46): 17519-24, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17088536

RESUMO

Male Drosophila melanogaster (Canton-S strain) exhibit aggression in competition for resources, to defend territory, and for access to mates. In the study reported here, we asked: (i) how long flies fight; (ii) whether flies adopt distinct winning and losing strategies as hierarchical relationships are established; (iii) whether flies exhibit experience-dependent changes in fighting strategies in later fights; and (iv) whether flies fight differently in second fights against familiar or unfamiliar opponents. The results showed that flies fought for up to 5 h. As hierarchical relationships were established, behavioral strategies changed: winners progressively lunged more and retreated less, whereas losers progressively lunged less and retreated more. Encounters between flies were frequent during the first 10 min of pairing and then dropped significantly. To ask whether flies remembered previous fights, they were re-paired with familiar or unfamiliar opponents after 30 min of separation. In familiar pairings, there were fewer encounters during the first 10 min of fighting than in unfamiliar pairings, and former losers fought differently against familiar winners than unfamiliar winners. Former losers lost or no decision was reached in all second fights in pairings with familiar or unfamiliar winners or with naive flies. Winner/winner, loser/loser, and naive/naive pairings revealed that losers used low-intensity strategies in later fights and were unlikely to form new hierarchical relationships, compared with winners or socially naive flies. These results strongly support the idea that learning and memory accompany the changes in social status that result from fruit fly fights.


Assuntos
Agressão/fisiologia , Drosophila melanogaster/fisiologia , Aprendizagem/fisiologia , Animais , Memória/fisiologia
17.
Cell Mol Neurobiol ; 25(2): 329-43, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16047545

RESUMO

Agonistic contests between lobsters housed together in a confined space progress through encounters of increasing intensity until a dominance relationship is established. Once this relationship is established, losing animals continually retreat from the advances of winners. These encounters are likely to consume much energy in both winning and losing animals. Therefore, one might expect involvement of many physiological systems before, during and after fights. Here, we report effects of agonistic encounters on cardiac frequency in winning and losing adult lobsters involved in dyadic interactions. The results show that: (i) small but significant increases in heart rate are observed upon chemical detection of a conspecific; (ii) during agonistic interactions, further increases in heart rate are seen; and (iii) ultimate winners exhibit greater increases in heart rate lasting longer periods of time compared to ultimate losers. Heart rate in winners remains elevated for at least 15 min after the contests have ended and animals have been returned to their home tanks. Reduced effects are seen in second and third pairings between familiar opponents. The sustained changes in heart rate that we observe in winning lobsters may result from hormonal modulation of cardiac function related to the change in social status brought about by contest outcome.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Frequência Cardíaca/fisiologia , Nephropidae/fisiologia , Animais , Eletrocardiografia , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia
19.
J Neurocytol ; 32(3): 253-63, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14724388

RESUMO

Neuronal somata located near branch points in the second thoracic nerve roots of the lobster are immunoreactive for Crustacean Hyperglycemic Hormone (CHH)-like peptides, a family of putative stress hormones. We have employed intracellular dye injection, immunostaining, and confocal imaging to observe the anatomy of these root neurons, which are morphologically diverse and dye coupled. Some root neurons contribute to neurosecretory structures at the points of exit of the root from the nerve cord. Other CNS-projecting root neurons send projections into the T5-A1 interganglionic connectives. Neurosecretory elements of the serotonin (5HT) and octopamine (OCT) systems, implicated in postural control and aggression, terminate densely in the vicinity of the second thoracic root neurons. We have confirmed by double immunostaining for 5HT and CHH-like peptides that the endings of the 5HT neurons are in close apposition to root neurons in the superficial regions of the root. We have also extended previous studies documenting electrophysiological responses of the root neurons to 5HT or OCT. Bath-applied 5HT and OCT inhibit the spontaneous bursting activity of root neurons at concentrations higher than 100 nM. The root neurons desensitize to the persistent presence of high concentrations of 5HT, but not OCT, in the bath. Nanomolar concentrations of OCT, but not 5HT have an excitatory effect on the spontaneous bursting activity of root neurons. This region of the lobster nervous system is of continuing interest, as identified neurons of three neuromodulatory systems implicated in stress and aggression converge and interact at the level of identified neurons.


Assuntos
Sistema Nervoso Central/citologia , Hormônios de Invertebrado/metabolismo , Nephropidae/citologia , Vias Neurais/citologia , Neuropeptídeos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Comportamento Animal/fisiologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Feminino , Corantes Fluorescentes , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/metabolismo , Imuno-Histoquímica , Masculino , Microscopia Confocal , Nephropidae/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios Eferentes/citologia , Neurônios Eferentes/efeitos dos fármacos , Neurônios Eferentes/metabolismo , Neurotransmissores/metabolismo , Octopamina/metabolismo , Octopamina/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Serotonina/metabolismo , Serotonina/farmacologia , Raízes Nervosas Espinhais/citologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...