Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 759, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138492

RESUMO

BACKGROUND: Oral cancer poses a significant health challenge due to limited treatment protocols and therapeutic targets. We aimed to investigate the invasive margins of gingivo-buccal oral squamous cell carcinoma (GB-OSCC) tumors in terms of the localization of genes and cell types within the margins at various distances that could lead to nodal metastasis. METHODS: We collected tumor tissues from 23 resected GB-OSCC samples for gene expression profiling using digital spatial transcriptomics. We monitored differential gene expression at varying distances between the tumor and its microenvironvent (TME), and performed a deconvulation study and immunohistochemistry to identify the cells and genes regulating the TME. RESULTS: We found that the tumor-stromal interface (a distance up to 200 µm between tumor and immune cells) is the most active region for disease progression in GB-OSCC. The most differentially expressed apex genes, such as FN1 and COL5A1, were located at the stromal ends of the margins, and together with enrichment of the extracellular matrix (ECM) and an immune-suppressed microenvironment, were associated with lymph node metastasis. Intermediate fibroblasts, myocytes, and neutrophils were enriched at the tumor ends, while cancer-associated fibroblasts (CAFs) were enriched at the stromal ends. The intermediate fibroblasts transformed into CAFs and relocated to the adjacent stromal ends where they participated in FN1-mediated ECM modulation. CONCLUSION: We have generated a functional organization of the tumor-stromal interface in GB-OSCC and identified spatially located genes that contribute to nodal metastasis and disease progression. Our dataset might now be mined to discover suitable molecular targets in oral cancer.


Assuntos
Fibroblastos , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Neoplasias Bucais , Células Mieloides , Microambiente Tumoral , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Metástase Linfática/patologia , Fibroblastos/patologia , Fibroblastos/metabolismo , Células Mieloides/patologia , Células Mieloides/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/metabolismo , Perfilação da Expressão Gênica , Feminino , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética
2.
Sci Rep ; 14(1): 11609, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773214

RESUMO

No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias Bucais , Pirimidinas , Uracila , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Uracila/metabolismo , Biomarcadores Tumorais/metabolismo , Pirimidinas/metabolismo , Feminino , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral , Idoso , Apirase/metabolismo
3.
Plant J ; 116(2): 329-346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37675599

RESUMO

Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA