Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830770

RESUMO

Post-transcriptional regulation of immune-related transcripts by RNA-binding proteins (RBPs) impacts immune cell responses, including mast cell functionality. Despite their importance in immune regulation, the functional role of most RBPs remains to be understood. By manipulating the expression of specific RBPs in murine mast cells, coupled with mass spectrometry and transcriptomic analyses, we found that the Regnase family of proteins acts as a potent regulator of mast cell physiology. Specifically, Regnase-1 is required to maintain basic cell proliferation and survival, whereas both Regnase-1 and -3 cooperatively regulate the expression of inflammatory transcripts upon activation, with Tnf being a primary target in both human and mouse cells. Furthermore, Regnase-3 directly interacts with Regnase-1 in mast cells and is necessary to restrain Regnase-1 expression through the destabilization of its transcript. Overall, our study identifies protein interactors of endogenously expressed Regnase factors, characterizes the regulatory interplay between Regnase family members in mast cells, and establishes their role in the control of mast cell homeostasis and inflammatory responses.


Assuntos
Sobrevivência Celular , Citocinas , Mastócitos , Mastócitos/metabolismo , Animais , Camundongos , Humanos , Citocinas/metabolismo , Sobrevivência Celular/genética , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/genética , Ribonucleases/metabolismo , Ribonucleases/genética , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos Endogâmicos C57BL , Proliferação de Células , Inflamação/metabolismo , Fatores de Transcrição
2.
Nat Commun ; 14(1): 3862, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386028

RESUMO

Mast cells are central players in allergy and asthma, and their dysregulated responses lead to reduced quality of life and life-threatening conditions such as anaphylaxis. The RNA modification N6-methyladenosine (m6A) has a prominent impact on immune cell functions, but its role in mast cells remains unexplored. Here, by optimizing tools to genetically manipulate primary mast cells, we reveal that the m6A mRNA methyltransferase complex modulates mast cell proliferation and survival. Depletion of the catalytic component Mettl3 exacerbates effector functions in response to IgE and antigen complexes, both in vitro and in vivo. Mechanistically, deletion of Mettl3 or Mettl14, another component of the methyltransferase complex, lead to the enhanced expression of inflammatory cytokines. By focusing on one of the most affected mRNAs, namely the one encoding the cytokine IL-13, we find that it is methylated in activated mast cells, and that Mettl3 affects its transcript stability in an enzymatic activity-dependent manner, requiring consensus m6A sites in the Il13 3'-untranslated region. Overall, we reveal that the m6A machinery is essential in mast cells to sustain growth and to restrain inflammatory responses.


Assuntos
Citocinas , Mastócitos , Citocinas/genética , RNA Mensageiro/genética , Qualidade de Vida , Interleucina-13/genética , Estabilidade de RNA/genética , Metiltransferases/genética
3.
Nat Immunol ; 23(8): 1208-1221, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879451

RESUMO

T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.


Assuntos
Proteínas de Ciclo Celular , Metiltransferases , Adenosina/análogos & derivados , Animais , Proteínas de Ciclo Celular/metabolismo , Metilação , Metiltransferases/genética , Camundongos , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
4.
Immunol Rev ; 304(1): 51-61, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34523134

RESUMO

RNA-binding proteins (RBPs) regulate all aspects of the life of mRNA transcripts. They are critically important in regulating immune responses, most notably by restraining excessive inflammation that can potentially lead to tissue damage. RBPs are also crucial for pathogen sensing, for instance for the recognition of viral nucleic acids. Concordant with these central regulatory roles, the dysregulated activity of many RBPs can give rise to disease. The expression and function of RBPs are therefore highly controlled by an elaborate network of transcriptional, post-transcriptional and post-translational mechanisms, including the ability of different RBPs to cross-regulate each other's expression. With an emphasis on macrophages and mast cells, we review current knowledge on the role of selected RBPs that have been shown to directly impact the expression of inflammatory transcripts. By focusing specifically on proteins of the Regnase and ZFP36 family, as well as on factors involved in N6 -methyladenosine (m6 A) deposition and recognition, we discuss mechanism of action, regulatory feedback, and impact of these selected proteins on immune responses. Finally, we include examples of the role of m6 A and RBPs in the recognition of viral RNAs. Overall, we provide a general overview of the impact of selected RBPs on the myeloid compartment, followed by a discussion of outstanding questions and challenges for the future.


Assuntos
Imunidade , Proteínas de Ligação a RNA , Metilação , Células Mieloides/metabolismo , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA