Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 14(1): 52-66, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21895912

RESUMO

Bacteroidetes are widespread in marine systems where they play a crucial role in organic matter degradation. Whole genome analysis of several strains has revealed a broad glycolytic and proteolytic potential. In this study, we used a targeted metagenomic approach to investigate the degradation capabilities of distinct Bacteroidetes clades from two contrasting regions of the North Atlantic Ocean, the Polar Biome (BPLR) and the North Atlantic Subtropical (NAST). We present here the analysis of 76 Bacteroidetes fosmids, of which 28 encode the 16S rRNA gene as phylogenetic marker, and their comparison to complete Bacteroidetes genomes. Almost all of the 16S rRNA harbouring fosmids belonged to clades that we previously identified in BPLR and NAST. The majority of sequenced fosmids could be assigned to Bacteroidetes affiliated with the class Flavobacteria. We also present novel genomic information on the classes Cytophagia and Sphingobacteria, suggesting a capability of the latter for attachment to algal surfaces. In our fosmid set we identified a larger potential for polysaccharide degradation and cell surface attachment in the phytoplankton-rich BPLR. Particularly, two flavobacterial fosmids, one affiliated with the genus Polaribacter, showed a whole armoury of enzymes that likely function in degradation of sulfated polysaccharides known to be major constituents of phytoplankton cell walls. Genes involved in protein and peptidoglycan degradation, although present in both fosmid sets, seemed to have a slight preponderance in NAST. This study provides support for the hypothesis of a distinct specialization among marine Bacteroidetes for the degradation of certain types of polymers.


Assuntos
Bacteroidetes/genética , Genoma Bacteriano , Oceano Atlântico , Bacteroidetes/metabolismo , Biblioteca Gênica , Metagenômica , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
PLoS One ; 3(3): e1805, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18350144

RESUMO

Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil.


Assuntos
Acinetobacter/genética , Genoma Bacteriano , Acinetobacter/classificação , Cromossomos Bacterianos , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA