Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 210: 1-8, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454576

RESUMO

Granulosa cells (GC) are critical regulators of fertility. During the process of ovarian folliculogenesis, these cells undergo profound changes while producing steroid hormones that are important to control follicular growth, oocyte maturation, and ovulation. Sirtuins are enzymes that regulate several biological processes and have been associated with control of GC function. However, how sirtuins are regulated in GC during ovarian folliculogenesis remains to be unveiled. The present study was designed to investigate effects of hormones that control GC proliferation, differentiation, and steroidogenesis on expression of the seven members of the mammalian sirtuins family (SIRT1-7) and on histone deacetylase activity of nuclear sirtuins (SIRT1, 6, and 7) in GC. Bovine granulosa cells were isolated from small antral follicles (1-5 mm) and were treated with or without follicle-stimulating hormone (FSH), insulin-like growth factor 1 (IGF-1), and fibroblast growth factors 2 (FGF2) and 9 (FGF9). Following treatments, cell proliferation was determined via a cell analyzer, estradiol synthesis and histone deacetylase activity were determined via ELISA, and sirtuins mRNA expression was determined via qPCR. Treatments with FSH and IGF-1 stimulated cell proliferation while addition of FGF2 or FGF9 suppressed estradiol production stimulated by FSH plus IGF-1. In terms of treatments that regulated sirtuins expression in GC, fibroblast growth factors were the most impactful: FGF2 alone increased SIRT1 mRNA expression in comparison to several treatments and increased mRNA abundance of SIRT2 and SIRT7 when added to the combination of FSH and IGF-1; the addition of FGF9 to the combination of FSH and IGF-1 increased mRNA expression of SIRT2, SIRT3, SIRT4, SIRT6, and SIRT7 and increased mRNA expression of SIRT5 in comparison to the negative control group that received no treatment. Also, FGF2 alone increased histone deacetylase activity of sirtuins in comparison to all treatments that contained FSH and/or IGF-1. Furthermore, several correlations were observed between treatments and sirtuins expression and activity, between estradiol or GC numbers and sirtuins expression, and between expression of sirtuins. As FGF2 and FGF9 are considered anti-differentiation factors of GC that stimulate GC proliferation while suppressing estradiol production in combination with FSH and IGF-1, data of this study suggest that sirtuins are associated with control of differentiation of bovine GC.


Assuntos
Hormônio Foliculoestimulante , Fator de Crescimento Insulin-Like I , Feminino , Bovinos , Animais , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/farmacologia , Progesterona/farmacologia , Células da Granulosa , Estradiol/farmacologia , Hormônio Foliculoestimulante Humano/farmacologia , RNA Mensageiro/metabolismo , Células Cultivadas , Mamíferos
2.
Mol Cell Endocrinol ; 565: 111890, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822263

RESUMO

Asprosin is an adipokine synthesized by the white adipose tissue that regulates glucose homeostasis and that has been reported to affect bovine theca cell function and follicular growth, but its role on granulosa cell functions remains to be unveiled. Hence, the objective of this study was to investigate asprosin impacts on granulosa cell steroidogenesis. Bovine granulosa cells from small ovarian follicles were cultured in vitro to investigate the effects of asprosin on cell proliferation, production of steroids, mRNA abundance of genes that encode steroidogenic enzymes and cell cycle regulators, and protein relative abundance of steroidogenic signaling pathways. Asprosin was shown to affect granulosa cell functions in a dose-dependent manner. In the presence of FSH, asprosin enhanced estradiol production and stimulated an increase in mRNA expression of FSHR and CYP19A1 in a dose-dependent manner. In the presence of IGF1, asprosin decreased estradiol production, increased progesterone production, altered PKA relative protein expression, and tended to alter the ratio of p-ERK1/2/total ERK1/2 protein expression in a dose-dependent manner. Furthermore, asprosin increased p-53 gene expression in basal culture conditions and with or without FSH and IGF1. Taken together, findings of this study show that asprosin is a regulator of granulosa cell functions and the effects of asprosin depend on dose and cell culture conditions.


Assuntos
Estradiol , Progesterona , Feminino , Bovinos , Animais , Estradiol/farmacologia , Progesterona/metabolismo , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/metabolismo , Proliferação de Células , RNA Mensageiro/metabolismo , Células Cultivadas
3.
J Anim Sci ; 100(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184171

RESUMO

This study aimed to characterize the effects of dietary restriction and subsequent re-alimentation on body composition and hepatic gene expression of epigenetic markers of DNA methylation, RNA m6A methylation, and histone acetylation in the liver of postpubertal beef bulls. Twelve Angus × Hereford crossbred bulls (n = 6, 23 ± 0.55 mo [young bulls], 558 ± 6.1 kg; and n = 6, 47 ± 1.2 mo [mature bulls], 740 ± 30.5 kg) were submitted to two dietary regimes per offering of the same hay: low plane of nutrition (90 d) and compensatory growth (90 d). Each animal acted as its own control and were fed Beardless wheat (Triticum aestivum) hay and mineral mix during the trial. Statistical analyses were performed using SAS 9.4 following a pre-post repeated measures design. Bulls in negative energy balance (NEB) decreased (P < 0.001) empty body weight (EBW; 23.1% [-139.1 kg]), empty body fat (EBF; 39.8% [-85.4 kg]), and empty body protein (EBP; 14.9% [-13.5 kg]) and fully recovered at the end of the trial. Body fat accounted for 77.1% of daily changes in body energy status, whereas body protein accounted for only 22.9% (P < 0.001). Relative abundance of epigenetic markers transcripts was analyzed via qPCR. Bulls at NEB tended (P ≤ 0.097) to increase gene expression of epigenetic markers of RNA m6A methylation (METTL14, VIRMA, and WTAP) and increased (P ≤ 0.050) the gene expression of epigenetic markers of DNA methylation (DNMT3A) and histone-acetylation (SIRT3 and SIRT7). Young bulls had a tendency (P ≤ 0.072) of higher RNA m6A methylation, VIRMA, and WTAP than mature bulls. Effect of diet × age interaction was not detected (P ≥ 0.137) for METTL14, VIRMA, WTAP, DNMT3A, SIRT3, or SIRT7. Younger bulls tended to have greater RNA m6A methylation levels than mature bulls, indicating that, while contemporaneously fed the same diet during periods of undernourishment followed by compensatory growth, age has an impact on this epigenetic mechanism. In conclusion, metabolic status seems to carry a greater impact on regulating bovine hepatic epigenetic mechanisms that modulate gene transcription, such as DNA methylation and histone acetylation, than on epigenetic mechanisms that regulate gene translation, such as RNA m6A methylation. During periods of undernourishment followed by compensatory growth, body fat pools appear to change more dynamically and are easily detected having a greater impact on epigenetic markers that modulate hepatic gene transcription rather than translation.


Epigenetics refers to heritable modifications that regulate gene expression without altering DNA sequence, hence, acting on top of the genes. Epigenetic markers change in response to stressors such as environmental factors, nutritional challenges, among other overlooked players that altogether could drastically impair animal performance. During periods of undernourishment followed by fast weight gain, dynamic changes in body composition, especially fat, appear to trigger an increased action of such physiological markers that modulate hepatic gene expression. Findings of this study unveil epigenetic metabolic pathways that deserve further investigation for proper quantification of potential consequences of metabolic stress on the liver of bovines that suffer significant loss of body weight followed by recovery. The alterations at the molecular level shown in this study provide a picture of silent metabolic changes that have not been detected previously in liver metabolism studies of cattle. Therefore, the impact of nutritional management and metabolic stress may be greater than previously expected and differently controlled than previously assumed.


Assuntos
Composição Corporal , Metabolismo Energético , Animais , Composição Corporal/fisiologia , Bovinos/genética , Metilação de DNA , Epigênese Genética , Fígado , Masculino
4.
Theriogenology ; 178: 67-72, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781067

RESUMO

Fibrillin-1 (FBN1) functions as a structural protein in the ovary, while the role of its protein product asprosin remains unknown. Both proteins are encoded by the FBN1 gene and when it is cleaved at the C-terminal end, asprosin is produced. Asprosin is associated with various metabolic parameters and sex-related hormones in women. One goal of this research was to quantify FBN1 and the presumed asprosin receptor, olfactory receptor family 4 subfamily M member 1 (OR4M1) mRNA in water buffalo granulosa cells and correlate them to aromatase (CYP19A1) gene expression. A second goal was to determine the effect of asprosin on follicular growth in vivo. In Exp. 1, ovaries were collected from a local slaughterhouse, follicular fluid and granulosa cells from small (<6 mm) and large (6-13 mm) follicles were aspirated, cellular RNA extracted for gene expression analysis, data analyzed using ANOVA, and Pearson correlation coefficients were calculated among FBN1, OR4M1, and CYP19A1 gene expression. In Exp. 2, an intra-follicular injection of asprosin (600 ng of asprosin/194 µL of PBS) or vehicle (200 µL of PBS; Controls) was given via the theca layer of the dominant follicle of synchronized cows (n = 5/group) 1 day after injection of PGF2α, follicle sizes were measured daily via transrectal ultrasonography for 3 days, a two-way repeated measures ANOVA was used to determine the effect of asprosin on growth rate of follicles from day 0-2, and Chi-square analysis for the percentage of cows ovulated 2 days following asprosin injections. In Exp. 1, FBN1 mRNA abundance was 1.9-fold greater in cells of follicular aspirates from small than large follicles (P < 0.05), but abundance of OR4M1 and CYP19A1 mRNA did not differ (P > 0.10) between the two sizes of follicles. Abundance of FBN1 mRNA was positively correlated with CYP19A1 (r = 0.55, P < 0.05) and OR4M1 mRNA (r = 0.50, P < 0.06) across follicle sizes. In Exp. 2, cows treated with asprosin revealed a greater follicle growth rate from day 0-2 (63.4% increase in diameter) than placebo cows (36.8% increase in diameter) post-injection, and more follicles from asprosin treatment vs. control group (100% vs. 20%; P < 0.05) ovulated within 2 days. These findings suggest that FBN1 may be developmentally regulated in follicular cells, and that asprosin may induce follicular growth in buffaloes, but further studies will be required to determine if asprosin directly regulates estradiol production during follicle development.


Assuntos
Búfalos , Regulação da Expressão Gênica , Animais , Bovinos , Estradiol , Feminino , Fibrilina-1/genética , Líquido Folicular , Células da Granulosa , RNA Mensageiro/genética
5.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902028

RESUMO

Aiming to characterize the effects of nutritional status on epigenetic markers, such as DNA 5-methyl cytosine (mC) methylation and RNA N6-methyladenosine (m6A) methylation, of bovine sperm, 12 Angus × Hereford crossbred breeding bulls were submitted to nutritional changes for a period of 180 d: no change in body weight (BW) (phase 1 = 12 d), BW loss (phase 2 = 78 d), and BW gain (phase 3 = 90 d) in a repeated measures design. Animals were fed Beardless wheat (Triticum aestivum) hay and mineral mix. Statistical analyses were performed using SAS 9.4 (SAS Inst., Cary, NC). Higher levels of RNA m6A (P = 0.004) and DNA methylation (P = 0.007) of spermatic cells were observed at phase 2 compared with phase 1. In phase 3, sperm RNA m6A methylation levels continued to be higher (P = 0.004), whereas the DNA of sperm cells was similar (P = 0.426) compared with phase 1. Growing bulls had a tendency (P = 0.109) of higher RNA m6A methylation levels than mature bulls. Phase 2 altered scrotal circumference (P < 0.001), sperm volume (P = 0.007), sperm total motility (P = 0.004), sperm progressive motility (P = 0.004), total sperm count (P = 0.049), normal sperm (P < 0.001), abnormal sperm (P < 0.001), primary sperm defects (P = 0.039), and secondary sperm defects (P < 0.001). In phase 3, bulls had scrotal circumference, sperm volume, sperm motility, sperm progressive motility, total sperm count, normal and abnormal spermatozoa, and primary and secondary spermatozoa defects similar to phase 1 (P > 0.05). Serum concentrations of insulin-like growth factor-1 and leptin decreased during phase 2 (P = 0.010), while no differences (P > 0.05) were detected between phases 3 and 1; growing bulls tended (P = 0.102) to present higher leptin levels than mature bulls. Specific for mature bulls, DNA methylation was positively correlated with leptin concentration (0.569, P = 0.021), whereas for young bulls, DNA methylation was positively correlated with abnormal spermatozoa (0.824, P = 0.006), primary spermatozoa defect (0.711, P = 0.032), and secondary spermatozoa defect (0.661, P = 0.052) and negatively correlated with normal spermatozoa (-0.824, P = 0.006), total sperm count (-0.702, P = 0.035), and sperm concentration (-0.846, P = 0.004). There was no significant correlation (P > 0.05) between RNA m6A and hormones and semen traits. In conclusion, the nutritional status of breeding bulls alters epigenetic markers, such as DNA methylation and RNA m6A methylation, in sperm, and the impact of change seems to be age dependent. These markers may serve as biomarkers of sperm quality and fertility of bulls in the future. Detrimental effects on sperm production and seminal quality are observed at periods and places when and where environmental and nutritional limitations are a year-round reality and may carry hidden players that may influence a lifetime of underperformance.


Assuntos
Citosina , Motilidade dos Espermatozoides , Adenosina/análogos & derivados , Animais , Peso Corporal , Cruzamento , Bovinos/genética , DNA , Masculino , Metilação , RNA/genética , Sêmen , Espermatozoides , Redução de Peso
6.
J Mol Endocrinol ; 66(1): 35-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112803

RESUMO

Asprosin is a novel fasting-induced protein encoded by fibrillin-1 (FBN1) gene, produced when FBN1 is cleaved by the enzyme furin, and is associated with insulin resistance and polycystic ovarian syndrome in humans. To characterize mRNA abundance of FBN1, FURIN, and the presumed asprosin receptor, olfactory receptor family 4 subfamily M member 1 (OR4M1) in granulosa (GC) and theca cells (TC), and identify hormones regulating FBN1 mRNA expression, GC and TC from small (1-5 mm; SM) and large (>8 mm; LG) follicles were collected from ovaries of heifers obtained at an abattoir and used for real-time PCR gene expression analysis or in vitro evaluation of hormone regulation and asprosin effects. SMTC had 151-fold greater (P < 0.05) FBN1 mRNA abundance than SMGC, and LGTC had 50-fold greater FBN1 mRNA than LGGC. In contrast, OR4M1 mRNA was 81-fold greater in SMGC than LGGC and did not differ from SMTC, but LGTC had 9-fold greater OR4M1 mRNA than LGGC. FURIN mRNA was 2.6-fold greater in SMTC than SMGC, but did not differ among follicular sizes. In cultured TC, leptin, insulin, LH, IGF1 and steroids did not affect FBN1 mRNA, but TGFB1 increased (P < 0.05) FBN1 mRNA by 2.2-fold; EGF and FGFs increased FBN1 mRNA by 1.3- to 1.5-fold. Asprosin enhanced LH-induced TC androstenedione production, reduced IGF1-induced TC proliferation, and had no effect on progesterone production. Developmental regulation of FBN1, FURIN and OR4M1 along with direct effects of asprosin on TC suggests that asprosin may be a novel regulator of ovarian follicular function.


Assuntos
Fibrilina-1/genética , Fibrilina-1/metabolismo , Folículo Ovariano/fisiologia , Feminino , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Homeostase , Humanos , Progesterona/biossíntese , Células Tecais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...