Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0271131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939438

RESUMO

Estrogens are thought to contribute to cognitive function in part by promoting the function of basal forebrain cholinergic neurons that project to the hippocampus and cortical regions including the entorhinal cortex. Reductions in estrogens may alter cognition by reducing the function of cholinergic inputs to both the hippocampus and entorhinal cortex. In the present study, we assessed the effects of ovariectomy on proteins associated with cholinergic synapses in the entorhinal cortex. Ovariectomy was conducted at PD63, and tissue was obtained on PD84 to 89 to quantify changes in the degradative enzyme acetylcholinesterase, the vesicular acetylcholine transporter, and muscarinic M1 receptor protein. Although the vesicular acetylcholine transporter was unaffected, ovariectomy reduced both acetylcholinesterase and M1 receptor protein, and these reductions were prevented by chronic replacement of 17ß-estradiol following ovariectomy. We also assessed the effects of ovariectomy on the cholinergic modulation of excitatory transmission, by comparing the effects of the acetylcholinesterase inhibitor eserine on evoked excitatory synaptic field potentials in brain slices obtained from intact rats, and from ovariectomized rats with or without 17ß-estradiol replacement. Eserine is known to prolong the effects of endogenously released acetylcholine, resulting in an M1-like mediated reduction of glutamate release at excitatory synapses. The reduction in excitatory synaptic potentials in layer II of the entorhinal cortex induced by 15-min application of 10 µM eserine was greatly reduced in slices from ovariectomized rats as compared to intact rats and ovariectomized rats with replacement of 17ß-estradiol. The reduced modulatory effect of eserine is consistent with the observed changes in cholinergic proteins, and suggests that reductions in 17ß-estradiol following ovariectomy lead to impaired cholinergic function within the entorhinal cortex.


Assuntos
Acetilcolinesterase , Córtex Entorrinal , Animais , Colinérgicos/farmacologia , Córtex Entorrinal/fisiologia , Estradiol/farmacologia , Estrogênios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Humanos , Ovariectomia , Fisostigmina/farmacologia , Ratos , Receptor Muscarínico M1 , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina
2.
Genes Brain Behav ; 21(1): e12741, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33960643

RESUMO

Mutations in the disrupted in schizophrenia-1 (DISC1) gene are associated with an increased risk of developing psychological disorders including schizophrenia, bipolar disorder, and depression. Assessing the impact of knocking out genes, like DISC1, in animal models provides valuable insights into the relationship between the gene and behavioral outcomes. Previous research has relied on mouse models to assess these impacts, however these may not yield as reliable or rich a behavioral analysis as can be obtained using rats. Thus, the goal of the present study was to characterize the behavioral effects of a biallelic functional deletion of the DISC1 gene in the Sprague Dawley rat. Female and male wild type and DISC1 knockout rats were assessed beginning just prior to weaning and during the post-weaning periadolescent period. The primary outcomes evaluated were activity, anxiety, responses to novel objects and conspecifics, and prepulse inhibition. These behaviors were selected as analogous indices of psychological dysfunction in humans. The DISC1 knockout had significant effects on behavior, although the kind and magnitude of deficits was different for females and males: in females, effects included hyperactivity, aversion to novelty, and a modest prepulse inhibition deficit; in males, effects in anxiety and neophobia were mild but their prepulse inhibition deficit was large. These data confirm that the DISC1 knockout rat model is an excellent way to reproduce and study symptoms of psychological disorders and provides compelling evidence for differential consequences of its dysfunction for females and males in the progression and emergence of specific behavioral deficits.


Assuntos
Ansiedade/genética , Comportamento Animal , Proteínas do Tecido Nervoso/genética , Sexo , Animais , Comportamento Exploratório , Feminino , Deleção de Genes , Masculino , Ratos , Ratos Sprague-Dawley
3.
Hippocampus ; 31(11): 1191-1201, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399010

RESUMO

Activation of estrogen receptors is thought to modulate cognitive function in the hippocampus, prefrontal cortex, and striatum by affecting both excitatory and inhibitory synaptic transmission. The entorhinal cortex is a major source of cortical sensory and associational input to the hippocampus, but it is unclear whether either estrogens or progestogens may modulate cognitive function through effects on synaptic transmission in the entorhinal cortex. This study assessed the effects of the brief application of either 17-ß estradiol (E2) or progesterone on excitatory glutamatergic synaptic transmission in the female rat entorhinal cortex in vitro. Rats were ovariectomized on postnatal day (PD) 63 and also received subdermal E2 implants to maintain constant low levels of circulating E2 on par with estrus. Electrophysiological recordings from brain slices were obtained between PD70 and PD86, and field excitatory postsynaptic potentials (fEPSPs) reflecting the activation of the superficial layers of the entorhinal cortex were evoked by the stimulation of layer I afferents. The application of E2 (10 nM) for 20 min resulted in a small increase in the amplitude of fEPSPs that reversed during the 30-min washout period. The application of the ERα agonist propylpyrazoletriol (PPT) (100 nM) or the ß agonist DPN (1 µM) did not significantly affect synaptic responses. However, the application of the G protein-coupled estrogen receptor-1 (GPER1) agonist G1 (100 nM) induced a reversible increase in fEPSP amplitude similar to that induced by E2. Furthermore, the potentiation of responses induced by G1 was blocked by the GPER1 antagonist G15 (1 µM). Application of progesterone (100 nM) or its metabolite allopregnanolone (1 µM) did not significantly affect synaptic responses. The potentiation of synaptic transmission in the entorhinal cortex induced by the activation of GPER1 receptors may contribute to the modulation of cognitive function in female rats.


Assuntos
Córtex Entorrinal , Receptores de Estrogênio , Animais , Estimulação Elétrica , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Proteínas de Ligação ao GTP/farmacologia , Ratos , Receptores Acoplados a Proteínas G , Transmissão Sináptica/fisiologia
4.
Addict Biol ; 25(2): e12708, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623532

RESUMO

Drug addiction is a chronic disorder that is characterized by compulsive drug seeking and involves cycling between periods of compulsive drug use, abstinence, and relapse. In both human addicts and animal models of addiction, chronic food restriction has been shown to increase rates of relapse. Previously, our laboratory has demonstrated a robust increase in drug seeking following a period of withdrawal in chronically food-restricted rats compared with sated rats. To date, the neural mechanisms that mediate the effect of chronic food restriction on drug seeking have not been elucidated. However, the paraventricular nucleus of the thalamus (PVT) appears to be a promising target to investigate. The objective of the current study was to examine the role of the PVT in the augmentation of heroin seeking induced by chronic food restriction. Male Long-Evans rats were trained to self-administer heroin for 10 days. Rats were then removed from the training chambers and experienced a 14-day withdrawal period with either unrestricted (sated) or mildly restricted (FDR) access to food. On day 14, rats underwent a 1-hour heroin-seeking test under extinction conditions, during which neural activity in the PVT was either inhibited or increased using pharmacological or chemogenetic approaches. Unexpectedly, inhibition of the PVT did not alter heroin seeking in food-restricted or sated rats, while enhancing neural activity in the PVT-attenuated heroin seeking in food-restricted rats. These results indicate that PVT activity can modulate heroin seeking induced by chronic food restriction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Privação de Alimentos/fisiologia , Dependência de Heroína/fisiopatologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Animais , Modelos Animais de Doenças , Heroína/farmacologia , Dependência de Heroína/psicologia , Masculino , Ratos , Ratos Long-Evans
5.
Neurosci Lett ; 674: 70-74, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524644

RESUMO

Persistent firing in layer III entorhinal cortex neurons that can be evoked during muscarinic receptor activation may contribute to mechanisms of working memory. The entorhinal cortex receives strong dopaminergic inputs which may modulate working memory for motivationally significant information. We used whole cell recordings in in vitro rat brain slices to assess the effects of dopamine on persistent firing in layer III neurons initiated by depolarizing current injection. Persistent firing during pharmacological block of ionotropic excitatory and inhibitory synaptic transmission, and in the presence of the cholinergic agonist carbachol (10 µM), was observed in 39% of layer III pyramidal cells. Addition of 1 µM dopamine suppressed the incidence of persistent firing and similarly reduced the mean probability of induction of persistent firing at each current step, without significantly affecting the latency, duration, plateau potential, or frequency of persistent firing that was induced. These results indicate that dopamine can result in a suppression of the induction of persistent firing in layer III entorhinal neurons, while still being permissive of persistent firing once it is initiated.


Assuntos
Dopamina/fisiologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Dopamina/administração & dosagem , Córtex Entorrinal/efeitos dos fármacos , Masculino , Memória de Curto Prazo/fisiologia , Neurônios/efeitos dos fármacos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...