Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 12(11): 2367-77, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23997116

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Although survival rates have improved, patients with certain biologic subtypes still have suboptimal outcomes. Current chemotherapeutic regimens are associated with short- and long-term toxicities and novel, less toxic therapeutic strategies are needed. Mer receptor tyrosine kinase is ectopically expressed in ALL patient samples and cell lines. Inhibition of Mer expression reduces prosurvival signaling, increases chemosensitivity, and delays development of leukemia in vivo, suggesting that Mer tyrosine kinase inhibitors are excellent candidates for targeted therapies. Brain and spinal tumors are the second most common malignancies in childhood. Multiple chemotherapy approaches and radiotherapies have been attempted, yet overall survival remains dismal. Mer is also abnormally expressed in atypical teratoid/rhabdoid tumors (AT/RT), providing a rationale for targeting Mer as a therapeutic strategy. We have previously described UNC569, the first small-molecule Mer inhibitor. This article describes the biochemical and biologic effects of UNC569 in ALL and AT/RT. UNC569 inhibited Mer activation and downstream signaling through ERK1/2 and AKT, determined by Western blot analysis. Treatment with UNC569 reduced proliferation/survival in liquid culture, decreased colony formation in methylcellulose/soft agar, and increased sensitivity to cytotoxic chemotherapies. MYC transgenic zebrafish with T-ALL were treated with UNC569 (4 µmol/L for two weeks). Fluorescence was quantified as indicator of the distribution of lymphoblasts, which express Mer and enhanced GFP. UNC569 induced more than 50% reduction in tumor burden compared with vehicle- and mock-treated fish. These data support further development of Mer inhibitors as effective therapies in ALL and AT/RT.


Assuntos
Antineoplásicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Tumor Rabdoide/metabolismo , Teratoma/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Terapia de Alvo Molecular , Neoplasias Experimentais , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/patologia , Teratoma/tratamento farmacológico , Teratoma/patologia , Peixe-Zebra , c-Mer Tirosina Quinase
2.
Adv Hematol ; 2012: 627920, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745640

RESUMO

Genomic instability plays a crucial role in oncogenesis. Somatically acquired mutations can disable some genes and inappropriately activate others. In addition, chromosomal rearrangements can amplify, delete, or even fuse genes, altering their functions and contributing to malignant phenotypes. Using array comparative genomic hybridization (aCGH), a technique to detect numeric variations between different DNA samples, we examined genomes from zebrafish (Danio rerio) T-cell leukemias of three cancer-prone lines. In all malignancies tested, we identified recurring amplifications of a zebrafish endogenous retrovirus. This retrovirus, ZFERV, was first identified due to high expression of proviral transcripts in thymic tissue from larval and adult fish. We confirmed ZFERV amplifications by quantitative PCR analyses of DNA from wild-type fish tissue and normal and malignant D. rerio T cells. We also quantified ZFERV RNA expression and found that normal and neoplastic T cells both produce retrovirally encoded transcripts, but most cancers show dramatically increased transcription. In aggregate, these data imply that ZFERV amplification and transcription may be related to T-cell leukemogenesis. Based on these data and ZFERV's phylogenetic relation to viruses of the murine-leukemia-related virus class of gammaretroviridae, we posit that ZFERV may be oncogenic via an insertional mutagenesis mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...