Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 151: 116021, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34087386

RESUMO

The age at which astronauts experience microgravity is a critical consideration for skeletal health and similarly has clinical relevance for musculoskeletal disuse on Earth. While astronauts are extensively studied for bone and other physiological changes, rodent studies enable direct evaluation of skeletal changes with microgravity. Yet, mouse spaceflight studies have predominately evaluated tissues from young, growing mice. We evaluated bone microarchitecture in tibiae and femurs from Young (9-week-old) and Mature (32-weeks-old) female, C57BL/6N mice flown in microgravity for ~2 and ~3 weeks, respectively. Microgravity-induced changes were both compartment- and site-specific. Changes were greater in trabecular versus cortical bone in Mature mice exposed to microgravity (-40.0% Tb. BV/TV vs -4.4% Ct. BV/TV), and bone loss was greater in the proximal tibia as compared to the distal femur. Trabecular thickness in Young mice increased by +25.0% on Earth and no significant difference following microgravity. In Mature mice exposed to microgravity, trabecular thickness rapidly decreased (-24.5%) while no change was detected in age-matched mice that were maintained on Earth. Mature mice exposed to microgravity experienced greater bone loss than Young mice with net skeletal growth. Moreover, machine learning classification models confirmed that microgravity exposure-driven decrements in trabecular microarchitecture and cortical structure occurred disproportionately in Mature than in Young mice. Our results suggest that age of disuse onset may have clinical implications in osteoporotic or other at-risk populations on Earth and may contribute to understanding bone loss patterns in astronauts.


Assuntos
Doenças Ósseas Metabólicas , Ausência de Peso , Animais , Densidade Óssea , Feminino , Fêmur/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Ausência de Peso/efeitos adversos
2.
Sci Rep ; 11(1): 10469, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006989

RESUMO

Reduced knee weight-bearing from prescription or sedentary lifestyles are associated with cartilage degradation; effects on the meniscus are unclear. Rodents exposed to spaceflight or hind limb unloading (HLU) represent unique opportunities to evaluate this question. This study evaluated arthritic changes in the medial knee compartment that bears the highest loads across the knee after actual and simulated spaceflight, and recovery with subsequent full weight-bearing. Cartilage and meniscal degradation in mice were measured via microCT, histology, and proteomics and/or biochemically after: (1) ~ 35 days on the International Space Station (ISS); (2) 13-days aboard the Space Shuttle Atlantis; or (3) 30 days of HLU, followed by a 49-day weight-bearing readaptation with/without exercise. Cartilage degradation post-ISS and HLU occurred at similar spatial locations, the tibial-femoral cartilage-cartilage contact point, with meniscal volume decline. Cartilage and meniscal glycosaminoglycan content were decreased in unloaded mice, with elevated catabolic enzymes (e.g., matrix metalloproteinases), and elevated oxidative stress and catabolic molecular pathway responses in menisci. After the 13-day Shuttle flight, meniscal degradation was observed. During readaptation, recovery of cartilage volume and thickness occurred with exercise. Reduced weight-bearing from either spaceflight or HLU induced an arthritic phenotype in cartilage and menisci, and exercise promoted recovery.


Assuntos
Cartilagem Articular/fisiopatologia , Membro Posterior/fisiopatologia , Articulação do Joelho/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Fenótipo , Voo Espacial , Animais , Feminino , Glicosaminoglicanos/análise , Masculino , Menisco/química , Menisco/fisiopatologia , Camundongos , Modelos Animais , Suporte de Carga
3.
PLoS One ; 15(4): e0230818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315311

RESUMO

The microgravity conditions of prolonged spaceflight are known to result in skeletal muscle atrophy that leads to diminished functional performance. To assess if inhibition of the growth factor myostatin has potential to reverse these effects, mice were treated with a myostatin antibody while housed on the International Space Station. Grip strength of ground control mice increased 3.1% compared to baseline values over the 6 weeks of the study, whereas grip strength measured for the first time in space showed flight animals to be -7.8% decreased in strength compared to baseline values. Control mice in space exhibited, compared to ground-based controls, a smaller increase in DEXA-measured muscle mass (+3.9% vs +5.6% respectively) although the difference was not significant. All individual flight limb muscles analyzed (except for the EDL) weighed significantly less than their ground counterparts at the study end (range -4.4% to -28.4%). Treatment with myostatin antibody YN41 was able to prevent many of these space-induced muscle changes. YN41 was able to block the reduction in muscle grip strength caused by spaceflight and was able to significantly increase the weight of all muscles of flight mice (apart from the EDL). Muscles of YN41-treated flight mice weighed as much as muscles from Ground IgG mice, with the exception of the soleus, demonstrating the ability to prevent spaceflight-induced atrophy. Muscle gene expression analysis demonstrated significant effects of microgravity and myostatin inhibition on many genes. Gamt and Actc1 gene expression was modulated by microgravity and YN41 in opposing directions. Myostatin inhibition did not overcome the significant reduction of microgravity on femoral BMD nor did it increase femoral or vertebral BMD in ground control mice. In summary, myostatin inhibition may be an effective countermeasure to detrimental consequences of skeletal muscle under microgravity conditions.


Assuntos
Força Muscular/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Miostatina/genética , Actinas/genética , Animais , Extremidades/fisiologia , Fêmur/fisiologia , Expressão Gênica/genética , Guanidinoacetato N-Metiltransferase/genética , Imunoglobulina G/genética , Camundongos , Camundongos Endogâmicos BALB C , Força Muscular/fisiologia , Atrofia Muscular/fisiopatologia , Voo Espacial/métodos , Ausência de Peso
4.
Life Sci Space Res (Amst) ; 24: 9-17, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31987483

RESUMO

The long-term adaptations to microgravity and other spaceflight challenges within the confines of a spacecraft, and readaptations to weight-bearing upon reaching a destination, are unclear. While post-flight gait change in astronauts have been well documented and reflect multi-system deficits, no data from rodents have been collected. Thus, the purpose of this study was to evaluate gait changes in response to spaceflight. A prospective collection of gait data was collected on 3 groups of mice: those who spent~35 days in orbit (FLIGHT) aboard the International Space Station (ISS); a ground-based control with the same habitat conditions as ISS (Ground Control; GC); and a vivarium control with typical rodent housing conditions (VIV). Pre-flight and post-flight gait measurements were conducted utilizing an optimized and portable gait analysis system (DigiGait, Mouse Specifics, Inc). The total data acquisition time for gait patterns of FLIGHT and control mice was 1.5-5 min/mouse, allowing all 20 mice per group to be assessed in less than an hour. Patterns of longitudinal gait changes were observed in the hind limbs and the forelimbs of the FLIGHT mice after ~35 days in orbit; few differences were observed in gait characteristics within the GC and VIV controls from the initial to the final gait assessment, and between groups. For FLIGHT mice, 12 out of 18 of the evaluated gait characteristics in the hind limbs were significantly changed, including: stride width variability; stride length and variance; stride, swing, and stance duration; paw angle and area at peak stance; and step angle, among others. Gait characteristics that decreased included stride frequency, and others. Moreover, numerous forelimb gait characteristics in the FLIGHT mice were changed at post-flight measures relative to pre-flight. This rapid DigiGait gait measurement tool and customized spaceflight protocol is useful for providing preliminary insight into how spaceflight could affect multiple systems in rodents in which deficits are reflected by altered gait characteristics.


Assuntos
Marcha , Ausência de Peso , Animais , Extremidades , Marcha/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Astronave , Fatores de Tempo , Ausência de Peso/efeitos adversos
5.
Calcif Tissue Int ; 106(2): 180-193, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31583426

RESUMO

Radiation therapy and estrogen deficiency can damage healthy bone and lead to an increased fracture risk. The goal of this study is to develop a mouse model for radiation therapy using a fractionated biologically equivalent dose for cervical cancer treatment in both pre- and postmenopausal women. Thirty-two female C57BL/6 mice 13 weeks of age were divided into four groups: Sham + non-irradiated (SHAM + NR), Sham + irradiated (SHAM + IRR), ovariectomy + non-irradiated (OVX + NR) and ovariectomy + irradiated (OVX + IRR). The irradiated mice received a 6 Gy dose of X-rays to the hindlimbs at Day 2, Day 4 and Day 7 (18 Gy total). Tissues were collected at Day 35. DEXA, microCT analysis and FEA were used to quantify structural and functional changes at the proximal tibia, midshaft femur, proximal femur and L1 vertebra. There was a significant (p < 0.05) decline in proximal tibia trabecular BV/TV from (1) IRR compared to NR mice within Sham (- 46%) and OVX (- 41%); (2) OVX versus Sham within NR mice (- 36%) and IRR mice (- 30%). With homogenous material properties applied to the proximal tibia mesh using FEA, there was (1) an increase in whole bone (trabecular + cortical) structural stiffness from IRR compared to NR mice within Sham (+ 10%) and OVX (+ 15%); (2) a decrease in stiffness from OVX versus Sham within NR mice (- 18%) and IRR mice (- 14%). Fractionated irradiation and ovariectomy both had a negative effect on skeletal microarchitecture. Ovariectomy had a systemic effect, while skeletal radiation damage was largely specific to trabecular bone within the X-ray field.


Assuntos
Osso e Ossos/fisiologia , Estradiol/deficiência , Lesões Experimentais por Radiação , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/efeitos da radiação , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/efeitos da radiação , Modelos Animais de Doenças , Estradiol/sangue , Estradiol/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Fêmur/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Lesões Experimentais por Radiação/complicações , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/fisiopatologia , Radiografia , Radioterapia/efeitos adversos , Dosagem Radioterapêutica , Tíbia/efeitos dos fármacos , Tíbia/efeitos da radiação , Microtomografia por Raio-X
6.
Sci Rep ; 9(1): 14428, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594977

RESUMO

While joint damage is the primary co-morbidity of hemophilia, osteoporosis and osteopenia are also observed. Coagulation factor VIII deficient (FVIII-/-) mice develop an osteoporotic phenotype in the absence of induced hemarthrosis that is exacerbated two weeks after an induced joint injury. Here we have compared comprehensively the bone health of clotting factor VIII, factor IX, and Von Willebrand Factor knockout (FVIII-/-, FIX-/-, and VWF-/- respectively) mice both in the absence of joint hemorrhage and following induced joint injury. We found FVIII-/- and FIX-/- mice, but not VWF-/- mice, developmentally have an osteoporotic phenotype. Unilateral induced hemarthrosis causes further bone damage in both FVIII-/- and FIX-/- mice, but has little effect on VWF-/- bone health, indicating that the FVIII.VWF complex is not required for normal bone remodeling in vivo. To further investigate the bone healing following hemarthrosis in hemophilia we examined a two week time course using microCT, serum chemistry, and histological analysis. Elevated ratio of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL), increased osterix+ osteoblastic cells, and decreased smoothness of the cortical bone surface were evident within several days of injury, indicative of acute heterotopic mineralization along the cortical surface. This was closely followed by increased interleukin-6 (IL-6) levels, increased osteoclast numbers, and significant trabecular bone loss. Uncoupled and disorganized bone formation and resorption continued for the duration of the study resulting in significant deterioration of the joint. Further elucidation of the shared mechanisms underlying abnormal bone homeostasis in the absence of FVIII or FIX is needed to guide evidence-based approaches to the screening and treatment of the prevalent bone defects in hemophilia A and B.


Assuntos
Fator IX/genética , Fator VIII/genética , Hemofilia A/metabolismo , Hemofilia B/metabolismo , Fator de von Willebrand/genética , Animais , Testes de Coagulação Sanguínea , Osso e Ossos/metabolismo , Hemofilia A/genética , Hemofilia A/patologia , Hemofilia B/genética , Hemofilia B/patologia , Humanos , Interleucina-6/genética , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/patologia , Fenótipo , Ligante RANK/genética , Fator de Transcrição Sp7/genética
7.
Bone ; 127: 91-103, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31055118

RESUMO

Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility.


Assuntos
Envelhecimento/patologia , Osso e Ossos/patologia , Insuficiência Renal Crônica/patologia , Animais , Fenômenos Biomecânicos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Colágeno/metabolismo , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Análise de Elementos Finitos , Imageamento Tridimensional , Masculino , Camundongos Endogâmicos C57BL , Osteócitos/patologia , Análise de Regressão , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/urina , Reprodutibilidade dos Testes , Espalhamento a Baixo Ângulo , Tíbia/patologia , Difração de Raios X , Microtomografia por Raio-X
8.
Am J Pathol ; 189(4): 868-885, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664861

RESUMO

Mitogen-activated protein kinases, including c-Jun NH2-terminal kinase (JNK), play an important role in the development and function of a large variety of tissues. The skeletal phenotype of JNK1 and JNK2 double-knockout (dKO) mice (JNK1fl/flCol2-Cre/JNK2-/-) and control genotypes were analyzed at different embryonic and postnatal stages. JNK1/2 dKO mice displayed a severe scoliotic phenotype beginning during development that was grossly apparent around weaning age. Alcian blue staining at embryonic day 17.5 showed abnormal fusion of the posterior spinal elements. In adult mice, fusion of vertebral bodies and of spinous and transverse processes was noted by micro-computed tomography, Alcian blue/Alizarin red staining, and histology. The long bones developed normally, and histologic sections of growth plate and articular cartilage revealed no significant abnormalities. Histologic sections of the vertebral column at embryonic days 15.5 and 17.5 revealed an abnormal organization of the annulus fibrosus in the dKOs, with chondrocyte-like cells and fusion of dorsal processes. Spinal sections in 10-week-old dKO mice showed replacement of intervertebral disk structures (annulus fibrosus and nucleus pulposus) by cartilage and bone tissues, with cells staining for markers of hypertrophic chondrocytes, including collagen X and runt-related transcription factor 2. These findings demonstrate a requirement for both JNK1 and JNK2 in the normal development of the axial skeleton. Loss of JNK signaling results in abnormal endochondral bone formation and subsequent severe scoliosis.


Assuntos
Anel Fibroso/patologia , Vértebras Cervicais/patologia , Disco Intervertebral/patologia , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Proteína Quinase 9 Ativada por Mitógeno/fisiologia , Escoliose/etiologia , Fusão Vertebral , Animais , Anel Fibroso/enzimologia , Diferenciação Celular , Proliferação de Células , Vértebras Cervicais/enzimologia , Condrogênese , Feminino , Disco Intervertebral/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Escoliose/enzimologia , Escoliose/patologia
9.
Int J Mol Sci ; 20(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577490

RESUMO

There is evidence that spaceflight poses acute and late risks to the central nervous system. To explore possible mechanisms, the proteomic changes following spaceflight in mouse brain were characterized. Space Shuttle Atlantis (STS-135) was launched from the Kennedy Space Center (KSC) on a 13-day mission. Within 3⁻5 h after landing, brain tissue was collected to evaluate protein expression profiles using quantitative proteomic analysis. Our results showed that there were 26 proteins that were significantly altered after spaceflight in the gray and/or white matter. While there was no overlap between the white and gray matter in terms of individual proteins, there was overlap in terms of function, synaptic plasticity, vesical activity, protein/organelle transport, and metabolism. Our data demonstrate that exposure to the spaceflight environment induces significant changes in protein expression related to neuronal structure and metabolic function. This might lead to a significant impact on brain structural and functional integrity that could affect the outcome of space missions.


Assuntos
Encéfalo/metabolismo , Proteômica , Voo Espacial , Ausência de Peso , Animais , Feminino , Glicólise , Substância Cinzenta/metabolismo , Espaço Intracelular/metabolismo , Metaboloma , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteômica/métodos , Transdução de Sinais , Substância Branca/metabolismo
10.
PLoS One ; 12(5): e0174174, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542224

RESUMO

The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA's Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.


Assuntos
Glândulas Suprarrenais/metabolismo , Fígado/metabolismo , Voo Espacial , Baço/imunologia , Baço/metabolismo , Glândulas Suprarrenais/patologia , Animais , Catecolaminas/metabolismo , Sobrevivência Celular , Corticosterona/metabolismo , Feminino , Perfilação da Expressão Gênica , Doenças do Sistema Imunitário/etiologia , Doenças do Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Metaboloma , Metabolômica , Camundongos Endogâmicos C57BL , Modelos Animais , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Receptores da Corticotropina/metabolismo , Baço/patologia , Transcriptoma
11.
Blood ; 129(15): 2161-2171, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28039188

RESUMO

Wound healing requires interactions between coagulation, inflammation, angiogenesis, cellular migration, and proliferation. Healing in dermal wounds of hemophilia B mice is delayed when compared with hemostatically normal wild-type (WT) mice, with abnormal persistence of iron deposition, inflammation, and neovascularity. We observed healing following induced joint hemorrhage in WT and factor IX (FIX) knockout (FIX-/-) mice, examining also parameters previously studied in an excisional skin wound model. Hemostatically normal mice tolerated this joint bleeding challenge, cleared blood from the joint, and healed with minimal pathology, even if additional autologous blood was injected intra-articularly at the time of wounding. Following hemarthrosis, joint wound healing in hemophilia B mice was impaired and demonstrated similar abnormal histologic features as previously described in hemophilic dermal wounds. Therefore, studies of pathophysiology and therapy of hemophilic joint bleeding performed in hemostatically normal animals are not likely to accurately reflect the healing defect of hemophilia. We additionally explored the hypothesis that the use of a FIX replacement protein with extended circulating FIX activity could improve synovial and osteochondral wound healing in hemophilic mice, when compared with treatment with unmodified recombinant FIX (rFIX) in the established joint bleeding model. Significantly improved synovial wound healing and preservation of normal osteochondral architecture are achieved by extending FIX activity after hemarthrosis using glycoPEGylated FIX when compared with an equivalent dose of rFIX. These results suggest that treating joint bleeding only until hemostasis is achieved may not result in optimal joint healing, which is improved by extending factor activity.


Assuntos
Fator IX , Hemartrose , Hemofilia B , Articulações , Pele , Cicatrização , Animais , Modelos Animais de Doenças , Fator IX/genética , Fator IX/farmacologia , Hemartrose/tratamento farmacológico , Hemartrose/genética , Hemartrose/metabolismo , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Hemofilia B/metabolismo , Articulações/lesões , Articulações/metabolismo , Camundongos , Camundongos Knockout , Pele/lesões , Pele/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/genética
12.
Cell Rep ; 17(11): 3077-3088, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974218

RESUMO

The NLRP3 inflammasome plays a critical role in host defense by facilitating caspase I activation and maturation of IL-1ß and IL-18, whereas dysregulation of inflammasome activity results in autoinflammatory disease. Factors regulating human NLRP3 activity that contribute to the phenotypic heterogeneity of NLRP3-related diseases have largely been inferred from the study of Nlrp3 mutant mice. By generating a mouse line in which the NLRP3 locus is humanized by syntenic replacement, we show the functioning of the human NLRP3 proteins in vivo, demonstrating the ability of the human inflammasome to orchestrate immune reactions in response to innate stimuli. Humanized mice expressing disease-associated mutations develop normally but display acute sensitivity to endotoxin and develop progressive and debilitating arthritis characterized by granulocytic infiltrates, elevated cytokines, erosion of bones, and osteoporosis. This NLRP3-dependent arthritis model provides a platform for testing therapeutic reagents targeting the human inflammasome.


Assuntos
Artropatias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Osteoporose/genética , Animais , Modelos Animais de Doenças , Humanos , Inflamassomos/genética , Artropatias/patologia , Camundongos , Mutação , Osteoporose/patologia
13.
J Appl Physiol (1985) ; 121(4): 917-924, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562841

RESUMO

Muscle irradiation (IRR) exposure can accompany unloading during spaceflight or cancer treatment, and this has been shown to be sufficient by itself to induce skeletal muscle signaling associated with a remodeling response. Although protein kinase B/Akt has an established role in the regulation of muscle growth and metabolism, there is a limited understanding of how Akt signaling in unloaded skeletal muscle is affected by IRR. Therefore, we examined the combined effects of acute IRR and short-term unloading on muscle Akt signaling. Female C57BL/6 mice were subjected to load bearing or hindlimb suspension (HS) for 5 days (n = 6/group). A single, unilateral hindlimb IRR dose (0.5 Gy X-ray) was administered on day 3 Gastrocnemius muscle protein expression was examined. HS resulted in decreased AktT308 phosphorylation, whereas HS+IRR resulted in increased AktT308 phosphorylation above baseline. HS resulted in reduced AktS473 phosphorylation, which was rescued by HS+IRR. Interestingly, IRR alone resulted in increased phosphorylation of AktS473, but not that of AktT308 HS resulted in decreased mTORC1 signaling, and this suppression was not altered by IRR. Both IRR and HS resulted in increased MuRF-1 expression, whereas atrogin-1 expression was not affected by either condition. These results demonstrate that either IRR alone or when combined with HS can differentially affect Akt phosphorylation, but IRR did not disrupt suppressed mTORC1 signaling by HS. Collectively, these findings highlight that a single IRR dose is sufficient to disrupt the regulation of Akt signaling in atrophying skeletal muscle.


Assuntos
Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Atrofia Muscular/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Exposição à Radiação , Transdução de Sinais/efeitos da radiação , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos da radiação , Doses de Radiação
15.
PLoS One ; 11(4): e0152877, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27097220

RESUMO

Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease.


Assuntos
Fígado/metabolismo , Voo Espacial , Animais , Biomarcadores/metabolismo , Peso Corporal , Feminino , Perfilação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/citologia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia de Sistemas
16.
Bone ; 86: 1-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26860048

RESUMO

Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60µm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD.


Assuntos
Osso e Ossos/patologia , Insuficiência Renal Crônica/patologia , Animais , Fenômenos Biomecânicos , Densidade Óssea , Matriz Óssea/patologia , Osso e Ossos/fisiopatologia , Calcificação Fisiológica/genética , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Esponjoso/fisiopatologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/patologia , Fraturas do Colo Femoral/fisiopatologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Fêmur/fisiopatologia , Testes de Função Renal , Masculino , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/fisiopatologia , Tíbia/patologia , Tíbia/fisiopatologia
17.
Bone ; 81: 562-572, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318907

RESUMO

Bone loss associated with microgravity exposure poses a significant barrier to long-duration spaceflight. Osteoprotegerin-Fc (OPG-Fc) is a receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitor that causes sustained inhibition of bone resorption after a single subcutaneous injection. We tested the ability of OPG-Fc to preserve bone mass during 12 days of spaceflight (SF). 64-day-old female C57BL/6J mice (n=12/group) were injected subcutaneously with OPG-Fc (20mg/kg) or an inert vehicle (VEH), 24h prior to launch. Ground control (GC) mice (VEH or OPG-Fc) were maintained under environmental conditions that mimicked those in the space shuttle middeck. Age-matched baseline (BL) controls were sacrificed at launch. GC/VEH, but not SF/VEH mice, gained tibia BMD and trabecular volume fraction (BV/TV) during the mission (P<0.05 vs. BL). SF/VEH mice had lower BV/TV vs. GC/VEH mice, while SF/OPG-Fc mice had greater BV/TV than SF/VEH or GC/VEH. SF reduced femur elastic and maximum strength in VEH mice, with OPG-Fc increasing elastic strength in SF mice. Serum TRAP5b was elevated in SF/VEH mice vs. GC/VEH mice. Conversely, SF/OPG-Fc mice had lower TRAP5b levels, suggesting that OPG-Fc preserved bone during spaceflight via inhibition of osteoclast-mediated bone resorption. Decreased bone formation also contributed to the observed osteopenia, based on the reduced femur periosteal bone formation rate and serum osteocalcin level. Overall, these observations suggest that the beneficial effects of OPG-Fc during SF are primarily due to dramatic and sustained suppression of bone resorption. In growing mice, this effect appears to compensate for the SF-related inhibition of bone formation, while preventing any SF-related increase in bone resorption. We have demonstrated that the young mouse is an appropriate new model for SF-induced osteopenia, and that a single pre-flight treatment with OPG-Fc can effectively prevent the deleterious effects of SF on mouse bone.


Assuntos
Reabsorção Óssea/prevenção & controle , Fragmentos Fc das Imunoglobulinas/farmacologia , Osteoprotegerina/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Voo Espacial , Ausência de Peso/efeitos adversos , Fosfatase Alcalina/sangue , Animais , Biomarcadores/sangue , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/fisiopatologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteocalcina/sangue , Ligante RANK/antagonistas & inibidores
18.
In Vivo ; 29(4): 423-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26130787

RESUMO

AIM: The goal of the study was to evaluate changes in lung status due to spaceflight stressors that include radiation above levels found on Earth. MATERIALS AND METHODS: Within hours after return from a 13-day mission in space onboard the Space Shuttle Atlantis, C57BL/6 mice (FLT group) were euthanized; mice housed on the ground in similar animal enclosure modules served as controls (AEM group). Lung tissue was collected to evaluate the expression of genes related to extracellular matrix (ECM)/adhesion and stem cell signaling. Pathway analysis was also performed. In addition, immunohistochemistry for stem cell antigen-1 (SCA-1), the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay for apoptosis, and staining for histological characteristics were performed. RESULTS: There were 18/168 genes significantly modulated in lungs from the FLT group (p<0.05 vs. AEM); 17 of these were up-regulated and one was down-regulated. The greatest effect, namely a 5.14-fold increase, was observed on Spock1 (also known as Spark/osteonectin), encoding a multi-functional protein that has anti-adhesive effects, inhibits cell proliferation and regulates activity of certain growth factors. Additional genes with increased expression were cadherin 3 (Cdh3), collagen, type V, alpha 1 (Col5a1), integrin alpha 5 (Itga5), laminin, gamma 1 (Lamc1), matrix metallopeptidase 14 (Mmp14), neural cell adhesion molecule 1 (Ncam1), transforming growth factor, beta induced (Tgfbi), thrombospondin 1 (Thbs1), Thbs2, versican (Vcan), fibroblast growth factor receptor 1 (Fgfr1), frizzled homolog 6 (Fzd6), nicastrin (Ncstn), nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4 (Nfatc4), notch gene homolog 4 (Notch4) and vang-like 2 (Vangl2). The down-regulated gene was Mmp13. Staining for SCA-1 protein showed strong signal intensity in bronchiolar epithelial cells of FLT mice (p<0.05 vs. AEM). TUNEL positivity was also significantly higher in the FLT mice (p<0.05 vs. AEM), but no consistent histological differences were noted. CONCLUSION: The results demonstrate that spaceflight-related stress had a significant impact on lung integrity, indicative of tissue injury and remodeling.


Assuntos
Apoptose , Pulmão/metabolismo , Pulmão/patologia , Voo Espacial , Animais , Apoptose/genética , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Transdução de Sinais , Células-Tronco/metabolismo , Estresse Fisiológico
19.
J Bone Miner Res ; 30(7): 1268-79, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25588731

RESUMO

Increased fracture risk is commonly reported in cancer patients receiving radiotherapy, particularly at sites within the field of treatment. The direct and systemic effects of ionizing radiation on bone at a therapeutic dose are not well-characterized in clinically relevant animal models. Using 20-week-old male C57Bl/6 mice, effects of irradiation (right hindlimb; 2 Gy) on bone volume and microarchitecture were evaluated prospectively by microcomputed tomography and histomorphometry and compared to contralateral-shielded bone (left hindlimb) and non-irradiated control bone. One week postirradiation, trabecular bone volume declined in irradiated tibias (-22%; p < 0.0001) and femurs (-14%; p = 0.0586) and microarchitectural parameters were compromised. Trabecular bone volume declined in contralateral tibias (-17%; p = 0.003), and no loss was detected at the femur. Osteoclast number, apoptotic osteocyte number, and marrow adiposity were increased in irradiated bone relative to contralateral and non-irradiated bone, whereas osteoblast number was unchanged. Despite no change in osteoblast number 1 week postirradiation, dynamic bone formation indices revealed a reduction in mineralized bone surface and a concomitant increase in unmineralized osteoid surface area in irradiated bone relative to contralateral and non-irradiated control bone. Further, dose-dependent and time-dependent calvarial culture and in vitro assays confirmed that calvarial osteoblasts and osteoblast-like MC3T3 cells were relatively radioresistant, whereas calvarial osteocyte and osteocyte-like MLO-Y4 cell apoptosis was induced as early as 48 hours postirradiation (4 Gy). In osteoclastogenesis assays, radiation exposure (8 Gy) stimulated murine macrophage RAW264.7 cell differentiation, and coculture of irradiated RAW264.7 cells with MLO-Y4 or murine bone marrow cells enhanced this effect. These studies highlight the multifaceted nature of radiation-induced bone loss by demonstrating direct and systemic effects on bone and its many cell types using clinically relevant doses; they have important implications for bone health in patients treated with radiation therapy.


Assuntos
Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osso e Ossos/efeitos da radiação , Membro Posterior/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Composição Corporal , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Osteogênese/efeitos da radiação , Células RAW 264.7 , Crânio/patologia , Crânio/efeitos da radiação , Fatores de Tempo , Raios X
20.
Radiol Oncol ; 48(3): 247-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25177239

RESUMO

BACKGROUND: The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. MATERIALS AND METHODS: Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. RESULTS: The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. CONCLUSIONS: Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...