Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37998788

RESUMO

The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.

2.
Sci Total Environ ; 870: 161851, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36709899

RESUMO

Globally, millions of households rely on onsite wastewater treatment systems (OWTSs), such as septic systems, to safely treat and dispose of wastewater. Conventional subsurface OWTSs are a common and affordable option for many landowners, and effectively remove pathogenic and nutrient pollution from wastewater when properly sited and maintained. However, OWTSs can also be a source of nonpoint pollution in watersheds when they are not functioning properly. To better understand the drivers of OWTS maintenance and failure, we explored relationships between OWTS age, environmental characteristics (edaphic conditions, topographic wetness index, and distance to stream), and repair and pumping records for OWTSs in Athens-Clarke County, Georgia, USA. Repair records indicated that 7.8 % of the 8826 OWTSs in the study were repaired over a 78-year period and that the median age of a repaired OWTSs was 65 years old. Pumping records showed that 12.2 % of the OWTSs were pumped in a 38-month period (an annualized rate of 5.7 %). The suite of widely available environmental variables we used as predictors were likely not granular enough to detect patterns of individual system maintenance at this scale. However, we found that the oldest OWTSs (>50 years) had the highest probabilities of being repaired and exhibiting signs of hydraulic failure. Notably, new OWTSs (2-10 years) were nearly as likely as the oldest systems to exhibit signs of hydraulic failure. These findings suggest that repair and replacement efforts should target older systems that are at or near the end of their serviceable life, and, in addition to continually monitoring older systems, all OWTSs should be inspected one year after installation. By leveraging data that may already exist, practitioners in other localities can use this reproducible approach to estimate the performance of OWTSs. Our data and methods will support efforts to prioritize wastewater infrastructure investments and policies.

3.
Appl Environ Microbiol ; 88(10): e0039322, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35532233

RESUMO

As the cases of Salmonella enterica infections associated with contaminated water are increasing, this study was conducted to address the role of surface water as a reservoir of S. enterica serotypes. We sampled rivers and streams (n = 688) over a 3-year period (2015 to 2017) in a mixed-use watershed in Georgia, USA, and 70.2% of the total stream samples tested positive for Salmonella. A total of 1,190 isolates were recovered and characterized by serotyping, antimicrobial susceptibility testing, and pulsed-field gel electrophoresis (PFGE). A wide range of serotypes was identified, including those commonly associated with humans and animals, with S. enterica serotype Muenchen being predominant (22.7%) and each serotype exhibiting a high degree of strain diversity by PFGE. About half (46.1%) of the isolates had PFGE patterns indistinguishable from those of human clinical isolates in the CDC PulseNet database. A total of 52 isolates (4.4%) were resistant to antimicrobials, out of which 43 isolates were multidrug resistant (MDR; resistance to two or more classes of antimicrobials). These 52 resistant Salmonella isolates were screened for the presence of antimicrobial resistance genes, plasmid replicons, and class 1 integrons, out of which four representative MDR isolates were selected for whole-genome sequencing analysis. The results showed that 28 MDR isolates resistant to 10 antimicrobials had blacmy-2 on an A/C plasmid. Persistent contamination of surface water with a high diversity of Salmonella strains, some of which are drug resistant and genetically indistinguishable from human isolates, supports a role of environmental surface water as a reservoir for and transmission route of this pathogen. IMPORTANCE Salmonella has been traditionally considered a foodborne pathogen, as it is one of the most common etiologies of foodborne illnesses worldwide; however, recent Salmonella outbreaks attributed to fresh produce and water suggest a potential environmental source of Salmonella that causes some human illnesses. Here, we investigated the prevalence, diversity, and antimicrobial resistance of Salmonella isolated from a mixed-use watershed in Georgia, USA, in order to enhance the overall understanding of waterborne Salmonella. The persistence and widespread distribution of Salmonella in surface water confirm environmental sources of the pathogen. A high proportion of waterborne Salmonella with clinically significant serotypes and genetic similarity to strains of human origin supports the role of environmental water as a significant reservoir of Salmonella and indicates a potential waterborne transmission of Salmonella to humans. The presence of antimicrobial-resistant and MDR Salmonella demonstrates additional risks associated with exposure to contaminated environmental water.


Assuntos
Infecções por Salmonella , Salmonella enterica , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/genética , Eletroforese em Gel de Campo Pulsado , Georgia , Humanos , Testes de Sensibilidade Microbiana , Salmonella , Sorogrupo , Sorotipagem , Água
4.
Environ Sci Technol ; 54(23): 14843-14853, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190486

RESUMO

Quantifying the risk that failing onsite waste treatment systems (OWTS), such as septic systems, present to human health and the environment is a key component in natural resource management. We integrated environmental and socio-demographic data to assess the potential environmental risk and environmental justice concerns related to septic infrastructure. We used this process to develop a framework that can be applied in other jurisdictions. We found only 8% of the registered OWTS presented potential environmental risk due to the topographic, hydrologic, or edaphic characteristics of their placement. In contrast, almost 70% of the OWTS presented potential environmental risk due to their age (25 years or older). Approximately 60% of the OWTS we estimated to be at risk from age or placement were found in census blocks with more than 30% of the population living below the poverty line, had a population that was more than 50% nonwhite, or was predominantly nonwhite and impoverished. Our work suggests that jurisdictions with limited information about septic infrastructure may be able to use geospatial data that they do have to predict the parcel-level locations of OWTS. These locations can then be used to inform environmental monitoring to proactively address environmental justice concerns.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Adulto , Monitoramento Ambiental , Humanos , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...