Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
3.
Histochem Cell Biol ; 161(1): 29-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37938346

RESUMO

Increase of collagen content and reorganization characterizes fibrosis but quantifying the latter remains challenging. Spatially complex structures are often analyzed via the fractal dimension; however, established methods for calculating this quantity either provide a single dimension for an entire object or a spatially distributed dimension that only considers binary images. These neglect valuable information related to collagen density in images of fibrotic tissue. We sought to develop a fractal analysis that can be applied to 3-dimensional (3D) images of fibrotic tissue. A fractal dimension map for each image was calculated by determining a single fractal dimension for a small area surrounding each image pixel, using fiber thickness as the third dimension. We found that this local fractal dimension increased with age and with progression of fibrosis regardless of collagen content. Our new method of distributed 3D fractal analysis can thus distinguish between changes in collagen content and organization induced by fibrosis.


Assuntos
Colágeno , Fractais , Humanos , Fibrose
4.
Front Physiol ; 14: 1287416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028774

RESUMO

Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn's cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.

5.
Mil Med ; 188(Suppl 6): 141-148, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948236

RESUMO

INTRODUCTION: During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation. MATERIALS AND METHODS: The computational model consisted of a ventilator pressure source, a distensible breathing circuit, an endotracheal tube, and a porcine lung consisting of recruited and derecruited zones, as well as a transitional zone capable of intratidal R/D. Lung injury was simulated by modifying each acinus with an inflation-dependent surface tension. APRV was simulated for an inhalation duration (Thigh) of 4.0 seconds, inspiratory pressures (Phigh) of 28 and 40 cmH2O, and exhalation durations (Tlow) ranging from 0.2 to 1.5 seconds. RESULTS: Both sustained acinar recruitment and intratidal R/D within the subtree were consistently higher for Phigh of 40 cmH2O vs. 28 cmH2O, regardless of Tlow. Increasing Tlow was associated with decreasing sustained acinar recruitment, but increasing intratidal R/D, within the subtree. Increasing Tlow was associated with decreasing elastance of both the total respiratory system and transitional subtree of the model. CONCLUSIONS: Our computational model demonstrates the confounding effects of cyclic R/D, sustained recruitment, and parenchymal strain stiffening on estimates of total lung elastance during APRV. Increasing inspiratory pressures leads to not only more sustained recruitment of unstable acini but also more intratidal R/D. Our model indicates that higher inspiratory pressures should be used in conjunction with shorter exhalation times, to avoid increasing intratidal R/D.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Pulmão , Animais , Suínos , Respiração Artificial/efeitos adversos , Complacência Pulmonar , Simulação por Computador
6.
Front Netw Physiol ; 3: 1257710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020240

RESUMO

This study developed and investigated a comprehensive multiscale computational model of a mechanically ventilated ARDS lung to elucidate the underlying mechanisms contributing to the development or prevention of VILI. This model is built upon a healthy lung model that incorporates realistic airway and alveolar geometry, tissue distensibility, and surfactant dynamics. Key features of the ARDS model include recruitment and derecruitment (RD) dynamics, alveolar tissue viscoelasticity, and surfactant deficiency. This model successfully reproduces realistic pressure-volume (PV) behavior, dynamic surface tension, and time-dependent descriptions of RD events as a function of the ventilation scenario. Simulations of Time-Controlled Adaptive Ventilation (TCAV) modes, with short and long durations of exhalation (T Low - and T Low +, respectively), reveal a higher incidence of RD for T Low + despite reduced surface tensions due to interfacial compression. This finding aligns with experimental evidence emphasizing the critical role of timing in protective ventilation strategies. Quantitative analysis of energy dissipation indicates that while alveolar recruitment contributes only a small fraction of total energy dissipation, its spatial concentration and brief duration may significantly contribute to VILI progression due to its focal nature and higher intensity. Leveraging the computational framework, the model may be extended to facilitate the development of personalized protective ventilation strategies to enhance patient outcomes. As such, this computational modeling approach offers valuable insights into the complex dynamics of VILI that may guide the optimization of ventilation strategies in ARDS management.

7.
Respir Res ; 24(1): 244, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803368

RESUMO

BACKGROUND: This study, in patients with symptomatic chronic obstructive pulmonary disease (COPD), explored switching therapy from non-extrafine high-dose inhaled corticosteroid/long-acting ß2-agonist (ICS/LABA; fluticasone propionate/salmeterol [FP/SLM]) to extrafine medium-dose beclometasone dipropionate/formoterol fumarate dihydrate/glycopyrronium (BDP/FF/G), both via dry-powder inhaler. Functional Respiratory Imaging, a quantitative computed tomography method with 3D reconstructions of pulmonary anatomy, was used to assess airway geometry and lung function. METHODS: Patients receiving a stable ICS/LABA regimen for ≥ 8 weeks were switched to FP/SLM 500/50 µg, one inhalation twice-daily (high-dose ICS) for 6 weeks. After baseline assessments (Visit 2 [V2]), therapy was switched to BDP/FF/G 100/6/10 µg, two inhalations twice-daily (medium-dose ICS) for 6 weeks, followed by V3. The primary endpoints were percentage changes in specific image-based airway volume (siVaw) and resistance (siRaw) from baseline to predose at V3 (i.e., chronic effects), assessed at total lung capacity (TLC) in central and distal lung regions. Secondary endpoints included siVaw and siRaw changes from pre-dose to post-dose at V2, and from pre-dose to post-dose at V3 at TLC (i.e., acute effects), and chronic and acute changes in siVaw and siRaw at functional residual capacity (FRC). Pre-dose forced expiratory volume in 1 s (FEV1) and COPD Assessment Test (CAT) were also assessed. RESULTS: There were no significant changes in pre-dose siVaw or siRaw at TLC from baseline to V3, although at FRC there was a significant decrease in mean siRaw in the distal airways (- 63.6%; p = 0.0261). In addition, in the distal airways there were significant acute effects at TLC on mean siVaw and siRaw (siVaw: 39.8% and 62.6%; siRaw: - 51.1% and - 57.2%, V2 and V3, respectively; all p < 0.001) and at FRC at V2 (siVaw: 77.9%; siRaw: - 67.0%; both p < 0.001). At V3, the mean change in pre-dose FEV1 was 62.2 mL (p = 0.0690), and in CAT total score was - 3.30 (p < 0.0001). CONCLUSIONS: In patients with symptomatic COPD receiving high-dose ICS/LABA, adding a long-acting muscarinic antagonist while decreasing the ICS dose by switching to medium-dose extrafine BDP/FF/G was associated with improved airway indices, especially in the distal airways, together with improvements in respiratory health status. Trial registration ClinicalTrials.gov (NCT04876677), first posted 6th May 2021.


Assuntos
Glicopirrolato , Doença Pulmonar Obstrutiva Crônica , Humanos , Fumarato de Formoterol , Beclometasona , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Antagonistas Muscarínicos , Administração por Inalação , Combinação Fluticasona-Salmeterol , Combinação de Medicamentos , Agonistas de Receptores Adrenérgicos beta 2 , Broncodilatadores
8.
Int J Numer Method Biomed Eng ; 39(9): e3745, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37403527

RESUMO

We present a new approach for physics-based computational modeling of diseased human lungs. Our main object is the development of a model that takes the novel step of incorporating the dynamics of airway recruitment/derecruitment into an anatomically accurate, spatially resolved model of respiratory system mechanics, and the relation of these dynamics to airway dimensions and the biophysical properties of the lining fluid. The importance of our approach is that it potentially allows for more accurate predictions of where mechanical stress foci arise in the lungs, since it is at these locations that injury is thought to arise and propagate from. We match the model to data from a patient with acute respiratory distress syndrome (ARDS) to demonstrate the potential of the model for revealing the underlying derangements in ARDS in a patient-specific manner. To achieve this, the specific geometry of the lung and its heterogeneous pattern of injury are extracted from medical CT images. The mechanical behavior of the model is tailored to the patient's respiratory mechanics using measured ventilation data. In retrospective simulations of various clinically performed, pressure-driven ventilation profiles, the model adequately reproduces clinical quantities measured in the patient such as tidal volume and change in pleural pressure. The model also exhibits physiologically reasonable lung recruitment dynamics and has the spatial resolution to allow the study of local mechanical quantities such as alveolar strains. This modeling approach advances our ability to perform patient-specific studies in silico, opening the way to personalized therapies that will optimize patient outcomes.

9.
Am J Respir Crit Care Med ; 208(2): 209-210, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311257
10.
J Cancer ; 14(4): 544-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057292

RESUMO

Real-time endobronchial ultrasound images are crucial for the accurate placement of the needle in peribronchial lung tumors and lymph nodes for diagnostic sampling. Beyond its role as a diagnostic tool, ultrasound-guided bronchoscopy can also aid the delivery of anti-cancer agents intratumorally, enabling diagnosis, staging, and treatment to occur within the same anesthesia, reducing the patient's burden. However, determining drug retention and distribution in situ remains challenging, albeit pivotal in assessing the success or failure of the therapeutic intervention. We hypothesized that ultrasound images acquired by the bronchoscope during the injection can provide qualitative and quantitative real-time information about drug transport. As a proof-of-concept, we retrospectively analyzed 13 videos of intratumoral cisplatin injections in advanced non-small cell lung cancers. We identified the injection and performed quantitative analysis through image processing and segmentation algorithms and mathematical models in 5 of them. We were able to infer the unlikeliness of a laminar flow through interstitial pores in favor of the emergence of tissue fractures. These data imply that the structural integrity of the tumor is a critical determinant of the ultimate distribution of an intratumorally delivered agent.

11.
J Appl Physiol (1985) ; 134(6): 1390-1402, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022962

RESUMO

Mechanical power can describe the complex interaction between the respiratory system and the ventilator and may predict lung injury or pulmonary complications, but the power associated with injury of healthy human lungs is unknown. Body habitus and surgical conditions may alter mechanical power but the effects have not been measured. In a secondary analysis of an observational study of obesity and lung mechanics during robotic laparoscopic surgery, we comprehensively quantified the static elastic, dynamic elastic, and resistive energies comprising mechanical power of ventilation. We stratified by body mass index (BMI) and examined power at four surgical stages: level after intubation, with pneumoperitoneum, in Trendelenburg, and level after releasing the pneumoperitoneum. Esophageal manometry was used to estimate transpulmonary pressures. Mechanical power of ventilation and its bioenergetic components increased over BMI categories. Respiratory system and lung power were nearly doubled in subjects with class 3 obesity compared with lean at all stages. Power dissipated into the respiratory system was increased with class 2 or 3 obesity compared with lean. Increased power of ventilation was associated with decreasing transpulmonary pressures. Body habitus is a prime determinant of increased intraoperative mechanical power. Obesity and surgical conditions increase the energies dissipated into the respiratory system during ventilation. The observed elevations in power may be related to tidal recruitment or atelectasis, and point to specific energetic features of mechanical ventilation of patients with obesity that may be controlled with individualized ventilator settings.NEW & NOTEWORTHY Mechanical power describes the complex interaction between a patient's lungs and the ventilator and may be useful in predicting lung injury. However, its behavior in obesity and during dynamic surgical conditions is not understood. We comprehensively quantified ventilation bioenergetics and effects of body habitus and common surgical conditions. These data show body habitus is a prime determinant of intraoperative mechanical power and provide quantitative context for future translation toward a useful perioperative prognostic measurement.


Assuntos
Lesão Pulmonar , Pneumoperitônio , Humanos , Mecânica Respiratória , Pulmão , Respiração Artificial , Obesidade/cirurgia , Volume de Ventilação Pulmonar
12.
Am J Physiol Cell Physiol ; 324(4): C941-C950, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878841

RESUMO

We hypothesized that a system that possesses the capacity for ongoing maintenance of its tissues will necessarily also have the capacity to self-heal following a perturbation. We used an agent-based model of tissue maintenance to investigate this idea, and in particular to determine the extent to which the current state of the tissue must influence cell behavior in order for tissue maintenance and self-healing to be stable. We show that a mean level of tissue density is robustly maintained when catabolic agents digest tissue at a rate proportional to local tissue density, but that the spatial heterogeneity of the tissue at homeostasis increases with the rate at which tissue is digested. The rate of self-healing is also increased by increasing either the amount of tissue removed or deposited at each time step by catabolic or anabolic agents, respectively, and by increasing the density of both agent types on the tissue. We also found that tissue maintenance and self-healing are stable with an alternate rule in which cells move preferentially to tissue regions of low density. The most basic form of self-healing can thus be achieved with cells that follow very simple rules of behavior, provided these rules are based in some way on the current state of the local tissue. Straightforward mechanisms can accelerate the rate of self-healing, as might be beneficial to the organism.


Assuntos
Homeostase , Modelos Biológicos
13.
Front Netw Physiol ; 3: 1124223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926543

RESUMO

Pulmonary Fibrosis (PF) is a deadly disease that has limited treatment options and is caused by excessive deposition and cross-linking of collagen leading to stiffening of the lung parenchyma. The link between lung structure and function in PF remains poorly understood, although its spatially heterogeneous nature has important implications for alveolar ventilation. Computational models of lung parenchyma utilize uniform arrays of space-filling shapes to represent individual alveoli, but have inherent anisotropy, whereas actual lung tissue is isotropic on average. We developed a novel Voronoi-based 3D spring network model of the lung parenchyma, the Amorphous Network, that exhibits more 2D and 3D similarity to lung geometry than regular polyhedral networks. In contrast to regular networks that show anisotropic force transmission, the structural randomness in the Amorphous Network dissipates this anisotropy with important implications for mechanotransduction. We then added agents to the network that were allowed to carry out a random walk to mimic the migratory behavior of fibroblasts. To model progressive fibrosis, agents were moved around the network and increased the stiffness of springs along their path. Agents migrated at various path lengths until a certain percentage of the network was stiffened. Alveolar ventilation heterogeneity increased with both percent of the network stiffened, and walk length of the agents, until the percolation threshold was reached. The bulk modulus of the network also increased with both percent of network stiffened and path length. This model thus represents a step forward in the creation of physiologically accurate computational models of lung tissue disease.

14.
Ann Biomed Eng ; 51(5): 1052-1062, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000319

RESUMO

Acute respiratory distress syndrome (ARDS) has a high mortality rate that is due in part to ventilator-induced lung injury (VILI). Nevertheless, the majority of patients eventually recover, which means that their innate reparative capacities eventually prevail. Since there are currently no medical therapies for ARDS, minimizing its mortality thus amounts to achieving an optimal balance between spontaneous tissue repair versus the generation of VILI. In order to understand this balance better, we developed a mathematical model of the onset and recovery of VILI that incorporates two hypotheses: (1) a novel multi-hit hypothesis of epithelial barrier failure, and (2) a previously articulated rich-get-richer hypothesis of the interaction between atelectrauma and volutrauma. Together, these concepts explain why VILI appears in a normal lung only after an initial latent period of injurious mechanical ventilation. In addition, they provide a mechanistic explanation for the observed synergy between atelectrauma and volutrauma. The model recapitulates the key features of previously published in vitro measurements of barrier function in an epithelial monolayer and in vivo measurements of lung function in mice subjected to injurious mechanical ventilation. This provides a framework for understanding the dynamic balance between factors responsible for the generation of and recovery from VILI.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Camundongos , Animais , Respiração Artificial , Volume de Ventilação Pulmonar , Células Epiteliais , Pulmão
15.
Ann Am Thorac Soc ; 20(2): 161-195, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36723475

RESUMO

Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.


Assuntos
Pneumopatias , Enfisema Pulmonar , Humanos , Benchmarking , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Respiração , Imageamento por Ressonância Magnética/métodos
16.
Chest ; 163(4): 753-762, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610669

RESUMO

BACKGROUND: The purpose of this study was to investigate physiological phenotypes of asthma in obesity. RESEARCH QUESTION: Do physiological responses during bronchoconstriction distinguish different groups of asthma in people with obesity, and also differentiate from responses simply related to obesity? STUDY DESIGN AND METHODS: Cross-sectional study of people with obesity (31 with asthma and 22 without lung disease). Participants underwent methacholine challenge testing with measurement of spirometry and respiratory system impedance by oscillometry. RESULTS: Participants had class III obesity (BMI, 46.7 ± 6.6 kg/m2 in control subjects and 47.2 ± 8.2 kg/m2 in people with asthma). Most participants had significant changes in peripheral airway impedance in response to methacholine: in control subjects, resistance at 5 Hz measured by oscillometry increased by 45% ± 27% and area under the reactance curve (AX) by 268% ± 236% in response to 16 mg/mL methacholine; in people with asthma, resistance at 5 Hz measured by oscillometry increased by 52% ± 38% and AX by 361% ± 295% in response to provocation concentration producing a 20% fall in FEV1 dose of methacholine. These responses suggest that obesity predisposes to peripheral airway reactivity. Two distinct groups of asthma emerged based on respiratory system impedance: one with lower reactance (baseline AX, 11.8; interquartile range, 9.9-23.4 cm H2O/L) and more concordant bronchoconstriction in central and peripheral airways; the other with high reactance (baseline AX, 46.7; interquartile range, 23.2-53.7 cm H2O/L) and discordant bronchoconstriction responses in central and peripheral airways. The high reactance asthma group included only women, and reported significantly more gastroesophageal reflux disease, worse chest tightness, more wheeze, and more asthma exacerbations than the low reactance group. INTERPRETATION: Peripheral airway reactivity detected by oscillometry is common in obese control subjects and obese people with asthma. There is a subgroup of obese asthma characterized by significant peripheral airway dysfunction by oscillometry out of proportion to spirometric airway dysfunction. This peripheral dysfunction represents clinically significant respiratory disease not readily assessed by spirometry.


Assuntos
Asma , Feminino , Humanos , Cloreto de Metacolina , Estudos Transversais , Asma/complicações , Asma/diagnóstico , Sistema Respiratório , Espirometria , Testes de Provocação Brônquica , Obesidade/complicações , Resistência das Vias Respiratórias/fisiologia , Volume Expiratório Forçado
17.
J Appl Physiol (1985) ; 134(2): 356-364, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603046

RESUMO

The increase in asthma associated with the obesity epidemic cannot simply be due to airway hyperresponsiveness from chronic lung compression because chronic lung compression is a feature of obesity in general. We therefore sought to investigate what other factors might be at play in the impaired lung function seen in obese individuals with asthma. We measured respiratory system impedance in four groups-Lean Control, Lean Allergic Asthma, Obese Control, and Obese Allergic Asthma-before and after administration of albuterol. Impedance measurements were fit with an anatomically based computational model of lung mechanics that represents the airway tree as a branching structure with a uniform degree of asymmetry and a fixed radius scaling ratio, γ, between branches of sequential order. The two model parameters that define the airway tree, γ and tracheal radius, varied only modestly between the four study groups, indicating relatively minor differences in airway caliber. In contrast, respiratory system elastance was 57, 34, 143, and 271 cmH2O/L, respectively, for the four groups, suggesting that obesity induced significant lung de-recruitment that was exacerbated by allergic asthma. In addition, when the radii of the individual branches of the airway tree were varied randomly, we found that roughly half the terminal airways had to be closed to have the model fit the data well. We conclude that de-recruitment of small airways is a particular feature of Obese Allergic Asthma, and this can be inferred from respiratory system impedance fit with an anatomically based computational model.NEW & NOTEWORTHY Using a novel anatomically based computational model to interpret oscillometry measurements of impedance, we show that respiratory system elastance is increased in obesity and is increased dramatically in individuals with obese allergic asthma. A significant component of this increased elastance in obese allergic asthma appears to be due to closure of small airways rather than alveolar atelectasis, and this closure is partially mitigated by albuterol. These findings potentially point to nonpharmacological therapies in obese allergic asthma aimed at recruiting closed airways.


Assuntos
Asma , Humanos , Pulmão , Obesidade/complicações , Testes de Função Respiratória , Albuterol/uso terapêutico
19.
Acad Radiol ; 30(6): 1073-1080, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933282

RESUMO

BACKGROUND: Radiomics, defined as quantitative features extracted from images, provide a non-invasive means of assessing malignant versus benign pulmonary nodules. In this study, we evaluate the consistency with which perinodular radiomics extracted from low-dose computed tomography images serve to identify malignant pulmonary nodules. MATERIALS AND METHODS: Using the National Lung Screening Trial (NLST), we selected individuals with pulmonary nodules between 4mm to 20mm in diameter. Nodules were segmented to generate four distinct datasets; 1) a Tumor dataset containing tumor-specific features, 2) a 10 mm Band dataset containing parenchymal features between the segmented nodule boundary and 10mm out from the boundary, 3) a 15mm Band dataset, and 4) a Tumor Size dataset containing the maximum nodule diameter. Models to predict malignancy were constructed using support-vector machine (SVM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) approaches. Ten-fold cross validation with 10 repetitions per fold was used to evaluate the performance of each approach applied to each dataset. RESULTS: With respect to the RF, the Tumor, 10mm Band, and 15mm Band datasets achieved areas under the receiver-operator curve (AUC) of 84.44%, 84.09%, and 81.57%, respectively. Significant differences in performance were observed between the Tumor and 15mm Band datasets (adj. p-value <0.001). However, when combining tumor-specific features with perinodular features, the 10mm Band + Tumor and 15mm Band + Tumor datasets (AUC 87.87% and 86.75%, respectively) performed significantly better than the Tumor Size dataset (66.76%) or the Tumor dataset. Similarly, the AUCs from the SVM and LASSO were 84.71% and 88.91%, respectively, for the 10mm Band + Tumor. CONCLUSIONS: The combined 10mm Band + Tumor dataset improved the differentiation between benign and malignant lung nodules compared to the Tumor datasets across all methodologies. This demonstrates that parenchymal features capture novel diagnostic information beyond that present in the nodule itself. (data agreement: NLST-163).


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Pulmão/patologia , Adenocarcinoma de Pulmão/patologia , Nódulos Pulmonares Múltiplos/patologia , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos
20.
J Clin Monit Comput ; 37(2): 409-420, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36149575

RESUMO

We recently developed a model-based method for analyzing multiple breath nitrogen washout data that does not require identification of Phase-III. In the present study, we assessed the effect of irregular breathing patterns on the intra-subject variabilities of the model parameters. Nitrogen fraction at the mouth was measured in 18 healthy and 20 asthmatic subjects during triplicate performances of multiple breath nitrogen washout, during controlled (target tidal volume 1 L at 8-12 breaths per minute) and free (unrestricted) breathing. The parameters Scond, Sacin and functional residual capacity (FRC) were obtained by conventional analysis of the slope of Phase-III. Fitting the model to the washout data provided functional residual capacity (FRCM), dead space volume (VD), the coefficient of variation of regional specific ventilation ([Formula: see text]), and the model equivalent of Sacin (Sacin-M). Intra-participant coefficients of variation for the model parameters for both health and asthma were FRCM < 5.2%, VD < 5.4%, [Formula: see text] < 9.0%, and Sacin-M < 45.6% for controlled breathing, and FRCM < 4.6%, VD < 5.3%, [Formula: see text] < 13.2%, and Sacin-M < 103.2% for free breathing. The coefficients of variation limits for conventional parameters were FRC < 6.1%, with Scond < 73.6% and Sacin < 49.2% for controlled breathing and Scond < 35.0% and Sacin < 74.4% for free breathing. The model-fitting approach to multiple breath nitrogen washout analysis provides a measure of regional ventilation heterogeneity in [Formula: see text] that is less affected by irregularities in the breathing pattern than its corresponding Phase-III slope analysis parameter Scond.


Assuntos
Asma , Nitrogênio , Humanos , Testes de Função Respiratória/métodos , Pulmão , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...