Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 4(11): 926-941, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920400

RESUMO

Obafluorin is a Pseudomonas fluorescens antibacterial natural product that inhibits threonyl-tRNA synthetase (ThrRS). It acts as a broad-spectrum antibiotic against a range of clinically relevant pathogens and comprises a strained ß-lactone ring decorated with catechol and 4-nitro-benzyl moieties. The catechol moiety is widespread in nature and its role in the coordination of ferric iron has been well-characterised in siderophores and Trojan horse antibiotics. Here we use a combination of mutasynthesis, bioassays, enzyme assays and metal binding studies to delineate the role of the catechol moiety in the bioactivity of obafluorin. We use P. fluorescens biosynthetic mutants to generate obafluorin analogues with modified catechol moieties. We demonstrate that an intact catechol is required for both antibacterial activity and inhibition of the ThrRS molecular target. Although recent work showed that the obafluorin catechol coordinates Zn2+ in the ThrRS active site, we find that obafluorin is a weak Zn2+ binder in vitro, contrasting with a strong, specific 1 : 1 interaction with Fe3+. We use bioassays with siderophore transporter mutants to probe the role of the obafluorin catechol in Fe3+-mediated uptake. Surprisingly, obafluorin does not behave as a Trojan horse antibiotic but instead exhibits increased antibacterial activity in the presence of Fe3+. We further demonstrate that Fe3+ binding prevents the hydrolytic breakdown of the ß-lactone ring, revealing a hitherto unreported function for the catechol moiety in natural product bioactivity.

2.
Nat Commun ; 13(1): 3498, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715397

RESUMO

Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but rational reprogramming efforts have been met with limited success. To gain greater insight into the design process, we wanted to examine how Nature creates assembly-lines and searched for biosynthetic pathways that might represent evolutionary transitions. By examining the biosynthesis of the anti-tubercular wollamides, we uncover how whole gene duplication and neofunctionalization can result in pathway bifurcation. We show that, in the case of the wollamide biosynthesis, neofunctionalization is initiated by intragenomic recombination. This pathway bifurcation leads to redundancy, providing the genetic robustness required to enable large structural changes during the evolution of antibiotic structures. Should the new product be non-functional, gene loss can restore the original genotype. However, if the new product confers an advantage, depreciation and eventual loss of the original gene creates a new linear pathway. This provides the blind watchmaker equivalent to the design, build, test cycle of synthetic biology.


Assuntos
Vias Biossintéticas , Duplicação Gênica , Antibacterianos/química , Vias Biossintéticas/genética , Evolução Molecular , Biologia Sintética
3.
Biochim Biophys Acta Gen Subj ; 1865(2): 129783, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166604

RESUMO

BACKGROUND: The bacterial GlgE pathway is the third known route to glycogen and is the only one present in mycobacteria. It contributes to the virulence of Mycobacterium tuberculosis. The involvement of GlgE in glycogen biosynthesis was discovered twenty years ago when the phenotype of a temperature-sensitive Mycobacterium smegmatis mutation was rescued by the glgE gene. The evidence at the time suggested glgE coded for a glucanase responsible for the hydrolysis of glycogen, in stark contrast with recent evidence showing GlgE to be a polymerase responsible for its biosynthesis. METHODS: We reconstructed and examined the temperature-sensitive mutant and characterised the mutated GlgE enzyme. RESULTS: The mutant strain accumulated the substrate for GlgE, α-maltose-1-phosphate, at the non-permissive temperature. The glycogen assay used in the original study was shown to give a false positive result with α-maltose-1-phosphate. The accumulation of α-maltose-1-phosphate was due to the lowering of the kcat of GlgE as well as a loss of stability 42 °C. The reported rescue of the phenotype by GarA could potentially involve an interaction with GlgE, but none was detected. CONCLUSIONS: We have been able to reconcile apparently contradictory observations and shed light on the basis for the phenotype of the temperature-sensitive mutation. GENERAL SIGNIFICANCE: This study highlights how the lowering of flux through the GlgE pathway can slow the growth mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Fosfatos Açúcares/metabolismo , Proteínas de Bactérias/genética , Estabilidade Enzimática , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Humanos , Modelos Moleculares , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mutação Puntual , Temperatura
4.
Curr Opin Chem Biol ; 59: 172-181, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949983

RESUMO

Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Actinobacteria. Underlying this network of mutualistic and antagonistic interactions are an array of chemical signals. Escovopsis weberi produces the shearinine terpene-indole alkaloids, which affect ant behaviour, diketopiperazines to combat defensive bacteria, and other small molecules that inhibit the fungal cultivar. Pseudonocardia and Streptomyces mutualist bacteria produce depsipeptide and polyene macrolide antifungals active against Escovopsis spp. The ant nest metabolome is further complicated by competition between defensive bacteria, which produce antibacterials active against even closely related species.


Assuntos
Formigas/microbiologia , Hypocreales/fisiologia , Actinobacteria/fisiologia , Animais , Interações Hospedeiro-Patógeno , Pseudonocardia/fisiologia , Streptomyces/fisiologia , Simbiose
5.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32561579

RESUMO

Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease.IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.


Assuntos
Arabidopsis/fisiologia , Endófitos/fisiologia , Interações entre Hospedeiro e Microrganismos , Streptomyces/fisiologia , Triticum/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
6.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732571

RESUMO

Most clinical antibiotics are derived from actinomycete natural products discovered at least 60 years ago. However, the repeated rediscovery of known compounds led the pharmaceutical industry to largely discard microbial natural products (NPs) as a source of new chemical diversity. Recent advances in genome sequencing have revealed that these organisms have the potential to make many more NPs than previously thought. Approaches to unlock NP biosynthesis by genetic manipulation of strains, by the application of chemical genetics, or by microbial cocultivation have resulted in the identification of new antibacterial compounds. Concomitantly, intensive exploration of coevolved ecological niches, such as insect-microbe defensive symbioses, has revealed these to be a rich source of chemical novelty. Here, we report the new lanthipeptide antibiotic kyamicin, which was generated through the activation of a cryptic biosynthetic gene cluster identified by genome mining Saccharopolyspora species found in the obligate domatium-dwelling ant Tetraponera penzigi of the ant plant Vachellia drepanolobium Transcriptional activation of this silent gene cluster was achieved by ectopic expression of a pathway-specific activator under the control of a constitutive promoter. Subsequently, a heterologous production platform was developed which enabled the purification of kyamicin for structural characterization and bioactivity determination. This strategy was also successful for the production of lantibiotics from other genera, paving the way for a synthetic heterologous expression platform for the discovery of lanthipeptides that are not detected under laboratory conditions or that are new to nature.IMPORTANCE The discovery of novel antibiotics to tackle the growing threat of antimicrobial resistance is impeded by difficulties in accessing the full biosynthetic potential of microorganisms. The development of new tools to unlock the biosynthesis of cryptic bacterial natural products will greatly increase the repertoire of natural product scaffolds. Here, we report a strategy for the ectopic expression of pathway-specific positive regulators that can be rapidly applied to activate the biosynthesis of cryptic lanthipeptide biosynthetic gene clusters. This allowed the discovery of a new lanthipeptide antibiotic directly from the native host and via heterologous expression.


Assuntos
Antibacterianos/biossíntese , Bacteriocinas/biossíntese , Genes Bacterianos , Saccharopolyspora/química , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Formigas/microbiologia , Bacteriocinas/isolamento & purificação , Bacteriocinas/metabolismo , Fabaceae , Família Multigênica , Saccharopolyspora/genética
7.
ACS Chem Biol ; 14(12): 2663-2671, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31675206

RESUMO

To meet the ever-growing demands of antibiotic discovery, new chemical matter and antibiotic targets are urgently needed. Many potent natural product antibiotics which were previously discarded can also provide lead molecules and drug targets. One such example is the structurally unique ß-lactone obafluorin, produced by Pseudomonas fluorescens ATCC 39502. Obafluorin is active against both Gram-positive and -negative pathogens; however, the biological target was unknown. We now report that obafluorin targets threonyl-tRNA synthetase, and we identify a homologue, ObaO, which confers immunity to the obafluorin producer. Disruption of obaO in P. fluorescens ATCC 39502 results in obafluorin sensitivity, whereas expression in sensitive E. coli strains confers resistance. Enzyme assays demonstrate that E. coli threonyl-tRNA synthetase is fully inhibited by obafluorin, whereas ObaO is only partly susceptible, exhibiting a very unusual partial inhibition mechanism. Altogether, our data highlight the utility of an immunity-guided approach for the identification of an antibiotic target de novo and will ultimately enable the generation of improved obafluorin variants.


Assuntos
Antibacterianos/metabolismo , Lactonas/metabolismo , Treonina-tRNA Ligase/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lactonas/farmacologia , Testes de Sensibilidade Microbiana
8.
Biochemistry ; 55(23): 3270-84, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27221142

RESUMO

Actinomycetes, such as mycobacteria and streptomycetes, synthesize α-glucan with α-1,4 linkages and α-1,6 branching to help evade immune responses and to store carbon. α-Glucan is thought to resemble glycogen except for having shorter constituent linear chains. However, the fine structure of α-glucan and how it can be defined by the maltosyl transferase GlgE and branching enzyme GlgB were not known. Using a combination of enzymolysis and mass spectrometry, we compared the properties of α-glucan isolated from actinomycetes with polymer synthesized in vitro by GlgE and GlgB. We now propose the following assembly mechanism. Polymer synthesis starts with GlgE and its donor substrate, α-maltose 1-phosphate, yielding a linear oligomer with a degree of polymerization (∼16) sufficient for GlgB to introduce a branch. Branching involves strictly intrachain transfer to generate a C chain (the only constituent chain to retain its reducing end), which now bears an A chain (a nonreducing end terminal branch that does not itself bear a branch). GlgE preferentially extends A chains allowing GlgB to act iteratively to generate new A chains emanating from B chains (nonterminal branches that themselves bear a branch). Although extension and branching occur primarily with A chains, the other chain types are sometimes extended and branched such that some B chains (and possibly C chains) bear more than one branch. This occurs less frequently in α-glucans than in classical glycogens. The very similar properties of cytosolic and capsular α-glucans from Mycobacterium tuberculosis imply GlgE and GlgB are sufficient to synthesize them both.


Assuntos
Glucanos/química , Glucanos/metabolismo , Glucosiltransferases/metabolismo , Mycobacterium/metabolismo , Streptomycetaceae/metabolismo , Fosfatos Açúcares/metabolismo , Eletroforese Capilar , Espectroscopia de Ressonância Magnética , Mycobacterium/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...